Skip to content
@ENSTA-U2IS-AI

ENSTA Paris - U2IS - AI

Deep Learning Research at U2IS

ENSTA Paris - AI team

Welcome to the GitHub page of the AI team of U2IS, the computer science 💻 and robotics 🤖 laboratory of ENSTA Paris!

This GitHub organization includes codes and resources mostly centered on uncertainty, vision, and deep learning.

Reach out and follow if you are interested!

Latest News

🎉 Five papers from the lab were accepted at ICLR 2024 🎉

🎉 One paper from the lab was accepted at AAAI 2024 🎉

Gianni presented a Tutorial at 🌴 WACV 2024 🌴: The Nuts and Bolts of Uncertainty Quantification 🎉

Latest Papers in Deep Learning

  • Franchi, G., Laurent, O., Leguéry, M., Bursuc, A., Pilzer, A., & Yao, A. Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models. [CVPR, 2024].
  • Laurent, O., Aldea E. & Franchi, G. A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors. In [ICLR, 2024].
  • Ammar, M. B., Belkhir, N., Popescu, S., Manzanera, A., & Franchi, G. NECO: NEural Collapse Based Out-of-distribution Detection. In [ICLR, 2024].
  • Zadem, M., Mover, S., & Nguyen, S. M. Reconciling Spatial and Temporal Abstractions for Goal Representation. In [ICLR, 2024].
  • Brellmann, D., Berthier, E., Filliat, D., & Frehse, G. On Double-Descent in Reinforcement Learning with LSTD and Random Features. In [ICLR, 2024].
  • Xu, K., Chen, R., Franchi, G., & Yao, A. Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement. In [ICLR, 2024].
  • Kazmierczak, R., Berthier, E., Frehse, G., & Franchi, G. (2023). CLIP-QDA: An Explainable Concept Bottleneck Model. arXiv preprint arXiv:2312.00110. [ArXiv].
  • Yu, X., Franchi, G., Gu, J., & Aldea, E. Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression. In [AAAI, 2024].
  • Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., & Bloch, I. Encoding the latent posterior of Bayesian neural networks for uncertainty quantification. [TPAMI].
  • Laroudie, C., Bursuc, A., Ha, M. L., & Franchi, G. Improving CLIP Robustness with Knowledge Distillation and Self-Training. [ArXiv].
  • Franchi, G., Hariat, M., Yu, X., Belkhir, N., Manzanera, A., & Filliat, D. InfraParis: A multi-modal and multi-task autonomous driving dataset. In [WACV, 2024].
  • Hariat, M., Laurent, O., Kazmierczak, R., Bursuc, A., Yao, A., & Franchi, G. Learning to Generate Training Datasets for Robust Semantic Segmentation. In [WACV, 2024].
  • Laurent, O., Lafage, A., Tartaglione, E., Daniel, G., Martinez, J. M., Bursuc, A., & Franchi, G. Packed-Ensembles for Efficient Uncertainty Estimation. In [ICLR, 2023].
  • Hariat, M., Manzanera, A., & Filliat, D. Rebalancing Gradient To Improve Self-Supervised Co-Training of Depth, Odometry and Optical Flow Predictions. In [WACV, 2023].
  • Franchi, G., Yu, X., Bursuc, A., Aldea, E., Dubuisson, S., & Filliat, D. Latent Discriminant Deterministic Uncertainty. In [ECCV, 2022].
  • Yu, X., Franchi, G., & Aldea, E. On Monocular Depth Estimation and Uncertainty Quantification using Classification Approaches for Regression. In [ICIP, 2022].

Pinned Loading

  1. awesome-uncertainty-deeplearning awesome-uncertainty-deeplearning Public

    This repository contains a collection of surveys, datasets, papers, and codes, for predictive uncertainty estimation in deep learning models.

    601 57

  2. torch-uncertainty torch-uncertainty Public

    Open-source framework for uncertainty and deep learning models in PyTorch 🌱

    Python 328 23

  3. LDU LDU Public

    Latent Discriminant deterministic Uncertainty [ECCV2022]

    Python 39 6

  4. MUAD-Dataset MUAD-Dataset Public

    MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks [BMVC 2022]

    Python 29 1

Repositories

Showing 10 of 20 repositories
  • torch-uncertainty Public

    Open-source framework for uncertainty and deep learning models in PyTorch 🌱

    ENSTA-U2IS-AI/torch-uncertainty’s past year of commit activity
    Python 328 Apache-2.0 23 11 (1 issue needs help) 2 Updated Dec 28, 2024
  • awesome-uncertainty-deeplearning Public

    This repository contains a collection of surveys, datasets, papers, and codes, for predictive uncertainty estimation in deep learning models.

    ENSTA-U2IS-AI/awesome-uncertainty-deeplearning’s past year of commit activity
    601 MIT 57 0 0 Updated Dec 6, 2024
  • Hands-On-Large-Language-Models Public Forked from HandsOnLLM/Hands-On-Large-Language-Models

    Official code repo for the O'Reilly Book - "Hands-On Large Language Models"

    ENSTA-U2IS-AI/Hands-On-Large-Language-Models’s past year of commit activity
    Jupyter Notebook 0 Apache-2.0 752 0 0 Updated Oct 18, 2024
  • uqt Public

    Uncertainty Tutorial website

    ENSTA-U2IS-AI/uqt’s past year of commit activity
    HTML 1 1 0 0 Updated Sep 30, 2024
  • ENSTA-U2IS-AI/Multimodal_Deep_segmentation’s past year of commit activity
    Python 5 MIT 0 0 0 Updated Aug 9, 2024
  • MUAD-Dataset Public

    MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks [BMVC 2022]

    ENSTA-U2IS-AI/MUAD-Dataset’s past year of commit activity
    Python 29 1 3 0 Updated Jun 21, 2024
  • ABNN-Make-me-a-BNN Public

    Make me a BNN paper presented at CVPR2024

    ENSTA-U2IS-AI/ABNN-Make-me-a-BNN’s past year of commit activity
    HTML 1 0 0 0 Updated Jun 2, 2024
  • Symmetry-Aware-BNN Public

    A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors paper presented @ICLR2024

    ENSTA-U2IS-AI/Symmetry-Aware-BNN’s past year of commit activity
    HTML 2 0 0 0 Updated May 15, 2024
  • infraParis Public

    Multimodal & infrared automotive dataset. Published at WACV 2024 (Oral).

    ENSTA-U2IS-AI/infraParis’s past year of commit activity
    JavaScript 6 1 1 0 Updated May 6, 2024
  • NECO Public

    NECO paper presented @ICLR2024

    ENSTA-U2IS-AI/NECO’s past year of commit activity
    HTML 3 0 0 0 Updated Apr 23, 2024

People

This organization has no public members. You must be a member to see who’s a part of this organization.

Top languages

Loading…

Most used topics

Loading…