Skip to content

Commit

Permalink
fixed broken link (huggingface#27560)
Browse files Browse the repository at this point in the history
  • Loading branch information
VpkPrasanna authored and EduardoPach committed Nov 19, 2023
1 parent b290b34 commit 8209b21
Show file tree
Hide file tree
Showing 5 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion docs/source/en/tasks/language_modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:
```

You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to
extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method:
extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process#flatten) method:

```py
>>> eli5 = eli5.flatten()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/tasks/masked_language_modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ For masked language modeling, the next step is to load a DistilRoBERTa tokenizer
```

You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to e
xtract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method:
xtract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process#flatten) method:

```py
>>> eli5 = eli5.flatten()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/es/tasks/language_modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ Para modelados de lenguaje por enmascaramiento carga el tokenizador DistilRoBERT
>>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
```

Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten):
Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process#flatten):

```py
>>> eli5 = eli5.flatten()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/tasks/language_modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ pip install transformers datasets evaluate
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
```

위의 예제에서 알 수 있듯이, `text` 필드는 `answers` 아래에 중첩되어 있습니다. 따라서 [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) 메소드를 사용하여 중첩 구조에서 `text` 하위 필드를 추출해야 합니다.
위의 예제에서 알 수 있듯이, `text` 필드는 `answers` 아래에 중첩되어 있습니다. 따라서 [`flatten`](https://huggingface.co/docs/datasets/process#flatten) 메소드를 사용하여 중첩 구조에서 `text` 하위 필드를 추출해야 합니다.

```py
>>> eli5 = eli5.flatten()
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/tasks/masked_language_modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티와
```

위의 예제에서와 마찬가지로, `text` 필드는 `answers` 안에 중첩되어 있습니다.
따라서 중첩된 구조에서 [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) 메소드를 사용하여 `text` 하위 필드를 추출합니다:
따라서 중첩된 구조에서 [`flatten`](https://huggingface.co/docs/datasets/process#flatten) 메소드를 사용하여 `text` 하위 필드를 추출합니다:

```py
>>> eli5 = eli5.flatten()
Expand Down

0 comments on commit 8209b21

Please sign in to comment.