Skip to content

ElucidataInc/PollyMetaboR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

The PollyMetaboR can be used to process metabolomics data generated using untargeted approach. This package works on the peak detailed format of El-MAVEN output.

Steps to use this package

library(PollyMetaboR)

Load Data

data(demo_peak_detailed_elmaven, package = "PollyMetaboR")
data(KEGG_mzMass, package = "PollyMetaboR")

Make XCMS Object

xcms_obj <- create_xcms_object_from_elmaven(demo_peak_detailed_elmaven)

Perform Annotation using CAMERA

camera_output <- perform_annotation_by_camera(xcms_obj, polarity = "positive", ppm = 10, mzabs = 0.1)

Restructure CAMERA output

restructure_camera <- restructure_camera_annotations(camera_output, polarity = "positive")

Get feature representative for each feature group

representative_df <- get_feature_group_representative(restructure_camera$combined, polarity = "positive")

Perform Metabolite Identification

identified_df <- perform_metabolite_identification(mz_data = representative_df, comp_data = KEGG_mzMass, mz_colname = 'basemass', mz_tolerence_unit= 'ppm', mz_tolerence = 20, numcores = 4)

Merge identified data with restrutured camera output

metab_ident <- merge_identified_with_restructured_camera(identified_df, restructure_camera$combined)

Summary of Annotation

p <- plot_hist_elements_frequency(restructure_camera$combined$pcgroup, frequency_type = "by_occurrence", 
                                  plot_title = "Number of features vs counts of pcgroup",
                                  xaxis_title = "Number of features",
                                  yaxis_title = "Counts of pcgroup")

Make group summary format from identification step output format

metscape <- make_group_summary_from_metab_ident_format(identified_df)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages