-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f8238d5
commit 0174b6d
Showing
1 changed file
with
24 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -86,7 +86,7 @@ python train_vq_tokenizer_v3.py --gpu_id 0 --name VQVAEV3_CB1024_CMT_H1024_NRES3 | |
```sh | ||
python train_vq_tokenizer_v3.py --gpu_id 0 --name VQVAEV3_CB1024_CMT_H1024_NRES3 --dataset_name kit --n_resblk 3 | ||
``` | ||
### Tokenize all motion data for the following training | ||
### Tokenizing all motion data for the following training | ||
#### HumanML3D | ||
```sh | ||
python tokenize_script.py --gpu_id 0 --name VQVAEV3_CB1024_CMT_H1024_NRES3 --dataset_name t2m | ||
|
@@ -97,7 +97,7 @@ python tokenize_script.py --gpu_id 0 --name VQVAEV3_CB1024_CMT_H1024_NRES3 --dat | |
python tokenize_script.py --gpu_id 0 --name VQVAEV3_CB1024_CMT_H1024_NRES3 --dataset_name kit | ||
``` | ||
|
||
### Train motion2text model: | ||
### Training motion2text model: | ||
#### HumanML3D | ||
```sh | ||
python train_m2t_transformer.py --gpu_id 0 --name M2T_EL4_DL4_NH8_PS --n_enc_layers 4 --n_dec_layers 4 --proj_share_weight --dataset_name t2m | ||
|
@@ -120,25 +120,41 @@ We use the same extractors provided by https://github.com/EricGuo5513/text-to-mo | |
|
||
|
||
## Generating and Animating 3D Motions (HumanML3D) | ||
#### Sampling results from test sets | ||
#### Translating motions into langauge (using test sets) | ||
With Beam Search: | ||
```sh | ||
python eval_comp_v6.py --name Comp_v6_KLD01 --est_length --repeat_time 3 --num_results 10 --ext default --gpu_id 1 | ||
python evaluate_m2t_transformer.py --name M2T_EL4_DL4_NH8_PS --gpu_id 2 --num_results 20 --n_enc_rs 4 --n_dec_layers 4 --proj_share_weight --ext beam_search | ||
``` | ||
where *--est_length* asks the model to use sampled motion lengths for generation, *--repeat_time* gives how many sampling rounds are carried out for each description. This script will results in 3x10 animations under directory *./eval_results/t2m/Comp_v6_KLD01/default/*. | ||
|
||
With Sampling: | ||
```sh | ||
python evaluate_m2t_transformer.py --name M2T_EL4_DL4_NH8_PS --gpu_id 2 --num_results 20 --n_enc_layers 4 --n_dec_layers 4 --proj_share_weight --sample --top_k 3 --ext top_3 | ||
``` | ||
|
||
#### Generating motions from texts (using test sets) | ||
```sh | ||
python evaluate_t2m_seq2seq.py --name T2M_Seq2Seq_NML1_Ear_SME0_N --num_results 10 --repeat_times 3 --sample --ext sample | ||
``` | ||
where *--repeat_time* gives how many sampling rounds are carried out for each description. This script will results in 3x10 animations under directory *./eval_results/t2m/T2M_Seq2Seq_NML1_Ear_SME0_N/sample/*. | ||
|
||
#### Sampling results from customized descriptions | ||
```sh | ||
python gen_motion_script.py --name Comp_v6_KLD01 --text_file input.txt --repeat_time 3 --ext customized --gpu_id 1 | ||
python gen_script_t2m_seq2seq.py --name T2M_Seq2Seq_NML1_Ear_SME0_N --repeat_times 3 --sample --ext customized --text_file ./input.txt | ||
``` | ||
This will generate 3 animated motions for each description given in text_file *./input.txt*. | ||
|
||
If you find problem with installing ffmpeg, you may not be able to animate 3d results in mp4. Try gif instead. | ||
|
||
## Quantitative Evaluations | ||
### Evaluating Motion2Text | ||
```sh | ||
python final_evaluation_m2t.py | ||
``` | ||
### Evaluating Motion2Text | ||
```sh | ||
python final_evaluation.py | ||
python final_evaluation_t2m.py | ||
``` | ||
This will evaluate the model performance on HumanML3D dataset by default. You could also run on KIT-ML dataset by uncommenting certain lines in *./final_evaluation.py*. The statistical results will saved to *./t2m_evaluation.log*. | ||
This will evaluate the model performance on HumanML3D dataset by default. You could also run on KIT-ML dataset by uncommenting certain lines in *./final_evaluation.py*. The statistical results will saved to *./m2t(t2m)_evaluation.log*. | ||
|
||
### Misc | ||
Contact Chuan Guo at [email protected] for any questions or comments. |