工作上遇到了一筆 8,000 多維(X)對應 8,000多維(Y)的高維度資料,研究如何透過機器學習來讓資料產生價值時,發現了有一群人持
續在研究多標籤的分類問題,並且穩定的產生相關Paper,相關文獻在此做分類並紀錄。
多標籤分類問題(Multi-Label Classification)一直都有實際應用的需求,
*
* PPT :Extreme Multi-label Classification for Information Retrieval XMLC4IR Tutorial at ECIR 2018
[連結](http://www.cs.put.poznan.pl/kdembczynski/xmlc-tutorial-ecir-2018/xmlc4ir-2018.pdf)
* Dataset:
The Extreme Classification Repository: Multi-label Datasets & Code
[連結]http://manikvarma.org/downloads/XC/XMLRepository.html
* Multi-label Classification using Deep Learning and Graph Embedding
[連結]http://xiaohan2012.github.io/2017/network-embedding-xml/
* Probabilistic Label Relation Graphs with Ising Models
* Deep Extreme Multi-label Learning
* Label tree structure learning (PPT)
[PPT連結]http://www.cs.put.poznan.pl/kdembczynski/pdf/fastPLT-idss-2017.pdf
* Probabilistic Label Trees for Efficient Large Scale Image Classification
[文獻連結]https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Liu_Probabilistic_Label_Trees_2013_CVPR_paper.pdf
* FastXML:A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning
[Python coding] https://github.com/Refefer/fastxml
[C++ coding] http://manikvarma.org/code/FastXML/download.html
* Deep Learning for Extreme Multi-label Text Classification
* Tenforflow 實作:
https://blog.csdn.net/sinat_30665603/article/details/79888225
* Order-Free RNN with Visual Attention for Multi-Label Classification
https://arxiv.org/pdf/1707.05495.pdf
https://www.youtube.com/watch?v=dGfCWUN-oFs
* Recurrently Exploring Class-wise Attention in A Hybrid Convolutional and Bidirectional LSTM Network for Multi-label
Aerial Image Classification
https://arxiv.org/pdf/1807.11245.pdf
* LEARNING TO DIAGNOSE FROM SCRATCH BY EXPLOITING DEPENDENCIES AMONG LABELS
https://arxiv.org/pdf/1710.10501.pdf
* Object Detecting 是想辦法將畫面切分成多個物件區域後在進行分類預測,其最複雜的地方在於定位,與Multi-Lable 有本質上的不同
參考文章: 關於影像辨識,所有你應該知道的深度學習模型
[文章連結]https://medium.com/@syshen/%E7%89%A9%E9%AB%94%E5%81%B5%E6%B8%AC-object-detection-740096ec4540