-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
57 lines (45 loc) · 1.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import datetime
import numpy as np
import torch
from models import get_model
from utils.data import get_data
from utils.arguments import parser
from trainer import Trainer
if __name__ == '__main__':
args = parser.parse_args()
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Add timestamp to logdir
if args.log_name is None:
LOG_DIR = os.path.join(args.log_dir,
datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
else:
LOG_DIR = os.path.join(args.log_dir,
args.log_name)
if args.test is not None:
torch.manual_seed(42)
np.random.seed(42)
dataloader_coords, n_classes, label_names = get_data(
args.data_dir, args.dataset, batch_size=args.batch_size,
train=True,
preprocessed_root=args.preprocessed_root,
load_fgsbir_photos=args.load_fgsbir_photos,
resample_strokes=not args.no_stroke_resampling,
max_stroke_length=args.max_stroke_length
)
test_dataloader_coords, _, _ = get_data(
args.data_dir, args.dataset, batch_size=args.n_log_img,
train=False,
preprocessed_root=args.preprocessed_root,
load_fgsbir_photos=args.load_fgsbir_photos,
resample_strokes=not args.no_stroke_resampling,
max_stroke_length=args.max_stroke_length
)
model = get_model(args, n_classes, DEVICE)
if args.test is not None and not args.model_type == 'communication':
model.load_state_dict(torch.load(args.test))
if args.test is not None:
torch.manual_seed(42)
np.random.seed(42)
trainer = Trainer(args.model_type, model, args.test is None, args.learning_rate, args.epochs, dataloader_coords, test_dataloader_coords, label_names, DEVICE, LOG_DIR, args.log_every, args.n_log_img, args.save_every, args.view_scale, args.weight_decay)
trainer.run()