The Wind Energy Generation Tools provides useful tools to assist in wind energy simulations.
Current list of tools:
- Synthetic Wind Turbine Power Curve Generator: Produces turbine power curves as as function of a turbine's specific capacity.
Clone a local copy of the repository to your computer
$ git clone https://github.com/FZJ-IEK3-VSA/windtools.git
Then install via pip as follows
$ cd <path>/windtools
$ pip install -e .
If you decide to use ths module anywhere in a published work, please kindly cite us using the following
@article{Ryberg2019,
author = {Ryberg, David Severin and Caglayan, Dilara Gulcin and Schmitt, Sabrina and Lin{\ss}en, Jochen and Stolten, Detlef and Robinius, Martin},
doi = {10.1016/j.energy.2019.06.052},
issn = {03605442},
journal = {Energy},
month = {sep},
pages = {1222--1238},
title = {{The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs}},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0360544219311818},
volume = {182},
year = {2019}
}
MIT License
Copyright (c) 2017 David Severin Ryberg (FZJ IEK-3), Heidi Heinrichs (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
You should have received a copy of the MIT License along with this program.
If not, see https://opensource.org/licenses/MIT
We are the Process and Systems Analysis department at the Institute of Energy and Climate Research: Electrochemical Process Engineering (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary department's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.
This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 – A Contribution of the Research Field Energy".