Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unthunk tangents (if any) before returning gradient #1551

Merged
merged 6 commits into from
Jan 21, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ Requires = "1.1"
SpecialFunctions = "1.6, 2"
Statistics = "1"
Tracker = "0.2"
ZygoteRules = "0.2.5"
ZygoteRules = "0.2.7"
julia = "1.6"

[extras]
Expand Down
11 changes: 5 additions & 6 deletions src/compiler/chainrules.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
# ToDo: Move some of this to ZygoteRules, or move unthunk_tangent for Tuple and NamedTuple from
# Zygote rules here?
function unthunk_tangent end
@inline unthunk_tangent(x::AbstractThunk) = wrap_chainrules_output(unthunk(x))
@inline unthunk_tangent(x::NTuple{N,<:Number}) where N = x
@inline unthunk_tangent(x::AbstractArray{<:Number,N}) where N = x
@inline unthunk_tangent(x::AbstractArray) = map(unthunk_tangent, x)
unthunk_tangent(d::IdDict) = IdDict([unthunk_tangent(k) => unthunk_tangent(v) for (k, v) in d])
@inline ZygoteRules.unthunk_tangent(x::AbstractThunk) = wrap_chainrules_output(unthunk(x))
@inline ZygoteRules.unthunk_tangent(x::NTuple{N,<:Number}) where N = x
@inline ZygoteRules.unthunk_tangent(x::AbstractArray{<:Number,N}) where N = x
@inline ZygoteRules.unthunk_tangent(x::AbstractArray) = map(unthunk_tangent, x)
ZygoteRules.unthunk_tangent(d::IdDict) = IdDict([unthunk_tangent(k) => unthunk_tangent(v) for (k, v) in d])
@non_differentiable unthunk_tangent(::IdDict)


Expand Down
4 changes: 2 additions & 2 deletions src/compiler/interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ julia> gradient([7, 11], 0, 1) do x, y, d
function gradient(f, args...)
y, back = pullback(f, args...)
grad = back(sensitivity(y))
return _project_all(args, grad)
return _project_all(args, unthunk_tangent(grad))
end

# Base.adjoint(f::Function) = x -> gradient(f, x)[1] # piracy!
Expand Down Expand Up @@ -218,7 +218,7 @@ function withgradient(f, args...)
else
back(sensitivity(y))
end
results = _project_all(args, grad)
results = _project_all(args, unthunk_tangent(grad))
(val=y, grad=results)
end

Expand Down
3 changes: 3 additions & 0 deletions src/lib/lib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,9 @@ end
accum(x::NamedTuple, y::ChainRulesCore.Tangent) = accum(x, wrap_chainrules_output(y))
accum(x::ChainRulesCore.Tangent, y::NamedTuple) = accum(wrap_chainrules_output(x), y)

accum(x::Nothing, y::AbstractThunk) = y
accum(x::AbstractThunk, y::Nothing) = x

accum(x, y::AbstractThunk) = @thunk(accum(x, unthunk(y)))
accum(x::AbstractThunk, y) = @thunk(accum(unthunk(x), y))
accum(x::AbstractThunk, y::AbstractThunk) = @thunk(accum(unthunk(x), unthunk(y)))
Expand Down
28 changes: 28 additions & 0 deletions test/chainrules.jl
Original file line number Diff line number Diff line change
Expand Up @@ -428,3 +428,31 @@ end
@test Zygote.wrap_chainrules_input([[2.0; 4.0], [1.0; 3.0]]) == [[2.0; 4.0], [1.0; 3.0]]
@test Zygote.wrap_chainrules_input([nothing; 4.0]) == [0.0; 4.0] # ChainRules uses the numeric zero where possible
end

@testset "Lazy" begin
custom_add(x, y) = x + y
function ChainRulesCore.rrule(::typeof(custom_add), x, y)
function pullback(Δ)
return NoTangent(), unthunk(Δ), @thunk(error("Should not compute."))
end
custom_add(x, y), pullback
end

x, y = 1f0, 1f0
Zygote.gradient(x) do x
sum(custom_add(x, y))
end
end

@testset "No thunks in the gradient" begin
struct CustomDense
w::Matrix{Float32}
end
(d::CustomDense)(x) = d.w * x

layers = [CustomDense(rand(Float32, 3, 3))]
x = ones(Float32, 3)
g = gradient(layers -> sum(layers[1](x)), layers)[1]
@test g[1] isa NamedTuple
@test g[1].w isa Array
end
Loading