Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upgrade lts 4.19.44 -> 4.19.45 #48

Merged
merged 104 commits into from
May 24, 2019
Merged

Conversation

schnitzeltony
Copy link

  • No merge conflict
  • No issues found

Waiman-Long and others added 30 commits May 22, 2019 07:37
[ Upstream commit a9e9bcb ]

During my rwsem testing, it was found that after a down_read(), the
reader count may occasionally become 0 or even negative. Consequently,
a writer may steal the lock at that time and execute with the reader
in parallel thus breaking the mutual exclusion guarantee of the write
lock. In other words, both readers and writer can become rwsem owners
simultaneously.

The current reader wakeup code does it in one pass to clear waiter->task
and put them into wake_q before fully incrementing the reader count.
Once waiter->task is cleared, the corresponding reader may see it,
finish the critical section and do unlock to decrement the count before
the count is incremented. This is not a problem if there is only one
reader to wake up as the count has been pre-incremented by 1.  It is
a problem if there are more than one readers to be woken up and writer
can steal the lock.

The wakeup was actually done in 2 passes before the following v4.9 commit:

  70800c3 ("locking/rwsem: Scan the wait_list for readers only once")

To fix this problem, the wakeup is now done in two passes
again. In the first pass, we collect the readers and count them.
The reader count is then fully incremented. In the second pass, the
waiter->task is then cleared and they are put into wake_q to be woken
up later.

Signed-off-by: Waiman Long <[email protected]>
Acked-by: Linus Torvalds <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Davidlohr Bueso <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tim Chen <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: huang ying <[email protected]>
Fixes: 70800c3 ("locking/rwsem: Scan the wait_list for readers only once")
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
commit 88640e1 upstream.

The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.

Signed-off-by: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Jon Masters <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Fixes: 04dcbdb ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 9d8d029 upstream.

On x86_64, all returns to usermode go through
prepare_exit_to_usermode(), with the sole exception of do_nmi().
This even includes machine checks -- this was added several years
ago to support MCE recovery.  Update the documentation.

Signed-off-by: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Jon Masters <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Fixes: 04dcbdb ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit e6f393b upstream.

When a function falls through to the next function due to a compiler
bug, objtool prints some obscure warnings.  For example:

  drivers/regulator/core.o: warning: objtool: regulator_count_voltages()+0x95: return with modified stack frame
  drivers/regulator/core.o: warning: objtool: regulator_count_voltages()+0x0: stack state mismatch: cfa1=7+32 cfa2=7+8

Instead it should be printing:

  drivers/regulator/core.o: warning: objtool: regulator_supply_is_couple() falls through to next function regulator_count_voltages()

This used to work, but was broken by the following commit:

  1381043 ("objtool: Support GCC 8's cold subfunctions")

The padding nops at the end of a function aren't actually part of the
function, as defined by the symbol table.  So the 'func' variable in
validate_branch() is getting cleared to NULL when a padding nop is
encountered, breaking the fallthrough detection.

If the current instruction doesn't have a function associated with it,
just consider it to be part of the previously detected function by not
overwriting the previous value of 'func'.

Reported-by: kbuild test robot <[email protected]>
Signed-off-by: Josh Poimboeuf <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: <[email protected]>
Fixes: 1381043 ("objtool: Support GCC 8's cold subfunctions")
Link: http://lkml.kernel.org/r/546d143820cd08a46624ae8440d093dd6c902cae.1557766718.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit a3eec13 upstream.

When using direct commands (DCMDs) on an RK3399, we get spurious
CQE completion interrupts for the DCMD transaction slot (Freescale#31):

[  931.196520] ------------[ cut here ]------------
[  931.201702] mmc1: cqhci: spurious TCN for tag 31
[  931.206906] WARNING: CPU: 0 PID: 1433 at /usr/src/kernel/drivers/mmc/host/cqhci.c:725 cqhci_irq+0x2e4/0x490
[  931.206909] Modules linked in:
[  931.206918] CPU: 0 PID: 1433 Comm: irq/29-mmc1 Not tainted 4.19.8-rt6-funkadelic Freescale#1
[  931.206920] Hardware name: Theobroma Systems RK3399-Q7 SoM (DT)
[  931.206924] pstate: 40000005 (nZcv daif -PAN -UAO)
[  931.206927] pc : cqhci_irq+0x2e4/0x490
[  931.206931] lr : cqhci_irq+0x2e4/0x490
[  931.206933] sp : ffff00000e54bc80
[  931.206934] x29: ffff00000e54bc80 x28: 0000000000000000
[  931.206939] x27: 0000000000000001 x26: ffff000008f217e8
[  931.206944] x25: ffff8000f02ef030 x24: ffff0000091417b0
[  931.206948] x23: ffff0000090aa000 x22: ffff8000f008b000
[  931.206953] x21: 0000000000000002 x20: 000000000000001f
[  931.206957] x19: ffff8000f02ef018 x18: ffffffffffffffff
[  931.206961] x17: 0000000000000000 x16: 0000000000000000
[  931.206966] x15: ffff0000090aa6c8 x14: 0720072007200720
[  931.206970] x13: 0720072007200720 x12: 0720072007200720
[  931.206975] x11: 0720072007200720 x10: 0720072007200720
[  931.206980] x9 : 0720072007200720 x8 : 0720072007200720
[  931.206984] x7 : 0720073107330720 x6 : 00000000000005a0
[  931.206988] x5 : ffff00000860d4b0 x4 : 0000000000000000
[  931.206993] x3 : 0000000000000001 x2 : 0000000000000001
[  931.206997] x1 : 1bde3a91b0d4d900 x0 : 0000000000000000
[  931.207001] Call trace:
[  931.207005]  cqhci_irq+0x2e4/0x490
[  931.207009]  sdhci_arasan_cqhci_irq+0x5c/0x90
[  931.207013]  sdhci_irq+0x98/0x930
[  931.207019]  irq_forced_thread_fn+0x2c/0xa0
[  931.207023]  irq_thread+0x114/0x1c0
[  931.207027]  kthread+0x128/0x130
[  931.207032]  ret_from_fork+0x10/0x20
[  931.207035] ---[ end trace 0000000000000002 ]---

The driver shows this message only for the first spurious interrupt
by using WARN_ONCE(). Changing this to WARN() shows, that this is
happening quite frequently (up to once a second).

Since the eMMC 5.1 specification, where CQE and CQHCI are specified,
does not mention that spurious TCN interrupts for DCMDs can be simply
ignored, we must assume that using this feature is not working reliably.

The current implementation uses DCMD for REQ_OP_FLUSH only, and
I could not see any performance/power impact when disabling
this optional feature for RK3399.

Therefore this patch disables DCMDs for RK3399.

Signed-off-by: Christoph Muellner <[email protected]>
Signed-off-by: Philipp Tomsich <[email protected]>
Fixes: 84362d7 ("mmc: sdhci-of-arasan: Add CQHCI support for arasan,sdhci-5.1")
Cc: [email protected]
[the corresponding code changes are queued for 5.2 so doing that as well]
Signed-off-by: Heiko Stuebner <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit b7ed69d upstream.

Fix the interrupt information for the GPIO lines with a shared EINT
interrupt.

Fixes: 16d7ff2 ("ARM: dts: add dts files for exynos5260 SoC")
Cc: [email protected]
Signed-off-by: Stuart Menefy <[email protected]>
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 9b23e1a upstream.

The name of CODEC input widget to which microphone is connected through
the "Headphone" jack is "IN12" not "IN1". This fixes microphone support
on Odroid XU3.

Cc: <[email protected]> # v4.14+
Signed-off-by: Sylwester Nawrocki <[email protected]>
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 7bda948 upstream.

Direct commands (DCMDs) are an optional feature of eMMC 5.1's command
queue engine (CQE). The Arasan eMMC 5.1 controller uses the CQHCI,
which exposes a control register bit to enable the feature.
The current implementation sets this bit unconditionally.

This patch allows to suppress the feature activation,
by specifying the property disable-cqe-dcmd.

Signed-off-by: Christoph Muellner <[email protected]>
Signed-off-by: Philipp Tomsich <[email protected]>
Acked-by: Adrian Hunter <[email protected]>
Fixes: 84362d7 ("mmc: sdhci-of-arasan: Add CQHCI support for arasan,sdhci-5.1")
Cc: [email protected]
Signed-off-by: Ulf Hansson <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 629266b upstream.

The call to of_get_next_child returns a node pointer with refcount
incremented thus it must be explicitly decremented after the last
usage.

Detected by coccinelle with warnings like:
    arch/arm/mach-exynos/firmware.c:201:2-8: ERROR: missing of_node_put;
        acquired a node pointer with refcount incremented on line 193,
        but without a corresponding object release within this function.

Cc: [email protected]
Signed-off-by: Wen Yang <[email protected]>
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit c3422ad upstream.

Currently there is no check on platform_get_irq() return value
in case it fails, hence never actually reporting any errors and
causing unexpected behavior when using such value as argument
for function regmap_irq_get_virq().

Fix this by adding a proper check, a message reporting any errors
and returning *pirq*

Addresses-Coverity-ID: 1443940 ("Improper use of negative value")
Fixes: 843735b ("power: axp288_charger: axp288 charger driver")
Cc: [email protected]
Signed-off-by: Gustavo A. R. Silva <[email protected]>
Reviewed-by: Hans de Goede <[email protected]>
Signed-off-by: Sebastian Reichel <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
…e blacklist

commit 9274c78 upstream.

The ACEPC T8 and T11 Cherry Trail Z8350 mini PCs use an AXP288 and as PCs,
rather then portables, they does not have a battery. Still for some
reason the AXP288 not only thinks there is a battery, it actually
thinks it is discharging while the PC is running, slowly going to
0% full, causing userspace to shutdown the system due to the battery
being critically low after a while.

This commit adds the ACEPC T8 and T11 to the axp288 fuel-gauge driver
blacklist, so that we stop reporting bogus battery readings on this device.

BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1690852
Cc: [email protected]
Signed-off-by: Hans de Goede <[email protected]>
Signed-off-by: Sebastian Reichel <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f08cae2 upstream.

The file offset argument to the arm64 sys_mmap() implementation is
scaled from bytes to pages by shifting right by PAGE_SHIFT.
Unfortunately, the offset is passed in as a signed 'off_t' type and
therefore large offsets (i.e. with the top bit set) are incorrectly
sign-extended by the shift. This has been observed to cause false mmap()
failures when mapping GPU doorbells on an arm64 server part.

Change the type of the file offset argument to sys_mmap() from 'off_t'
to 'unsigned long' so that the shifting scales the value as expected.

Cc: <[email protected]>
Signed-off-by: Boyang Zhou <[email protected]>
[will: rewrote commit message]
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 75a19a0 upstream.

When executing clock_gettime(), either in the vDSO or via a system call,
we need to ensure that the read of the counter register occurs within
the seqlock reader critical section. This ensures that updates to the
clocksource parameters (e.g. the multiplier) are consistent with the
counter value and therefore avoids the situation where time appears to
go backwards across multiple reads.

Extend the vDSO logic so that the seqlock critical section covers the
read of the counter register as well as accesses to the data page. Since
reads of the counter system registers are not ordered by memory barrier
instructions, introduce dependency ordering from the counter read to a
subsequent memory access so that the seqlock memory barriers apply to
the counter access in both the vDSO and the system call paths.

Cc: <[email protected]>
Cc: Marc Zyngier <[email protected]>
Tested-by: Vincenzo Frascino <[email protected]>
Link: https://lore.kernel.org/linux-arm-kernel/[email protected]/
Reported-by: Thomas Gleixner <[email protected]>
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit d263119 upstream.

Currently, compat tasks running on arm64 can allocate memory up to
TASK_SIZE_32 (UL(0x100000000)).

This means that mmap() allocations, if we treat them as returning an
array, are not compliant with the sections 6.5.8 of the C standard
(C99) which states that: "If the expression P points to an element of
an array object and the expression Q points to the last element of the
same array object, the pointer expression Q+1 compares greater than P".

Redefine TASK_SIZE_32 to address the issue.

Cc: Catalin Marinas <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: <[email protected]>
Reported-by: Jann Horn <[email protected]>
Signed-off-by: Vincenzo Frascino <[email protected]>
[will: fixed typo in comment]
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 6fda41b upstream.

Some firmwares may reboot CPUs with OS Double Lock set. Make sure that
it is unlocked, in order to use debug exceptions.

Cc: <[email protected]>
Signed-off-by: Jean-Philippe Brucker <[email protected]>
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 827a108 upstream.

When the CPU comes out of suspend, the firmware may have modified the OS
Double Lock Register. Save it in an unused slot of cpu_suspend_ctx, and
restore it on resume.

Cc: <[email protected]>
Signed-off-by: Jean-Philippe Brucker <[email protected]>
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 6690e86 upstream.

Effectively reverts commit:

  2c7577a ("sched/x86_64: Don't save flags on context switch")

Specifically because SMAP uses FLAGS.AC which invalidates the claim
that the kernel has clean flags.

In particular; while preemption from interrupt return is fine (the
IRET frame on the exception stack contains FLAGS) it breaks any code
that does synchonous scheduling, including preempt_enable().

This has become a significant issue ever since commit:

  5b24a7a ("Add 'unsafe' user access functions for batched accesses")

provided for means of having 'normal' C code between STAC / CLAC,
exposing the FLAGS.AC state. So far this hasn't led to trouble,
however fix it before it comes apart.

Reported-by: Julien Thierry <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Fixes: 5b24a7a ("Add 'unsafe' user access functions for batched accesses")
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 25baaf8 upstream.

Commit 8efd972 ("crypto: testmgr - support checking skcipher output IV")
caused the crypto4xx driver to produce the following error:

| ctr-aes-ppc4xx encryption test failed (wrong output IV)
| on test vector 0, cfg="in-place"

This patch fixes this by reworking the crypto4xx_setkey_aes()
function to:

 - not save the iv for ECB (as per 18.2.38 CRYP0_SA_CMD_0:
   "This bit mut be cleared for DES ECB mode or AES ECB mode,
   when no IV is used.")

 - instruct the hardware to save the generated IV for all
   other modes of operations that have IV and then supply
   it back to the callee in pretty much the same way as we
   do it for cbc-aes already.

 - make it clear that the DIR_(IN|OUT)BOUND is the important
   bit that tells the hardware to encrypt or decrypt the data.
   (this is cosmetic - but it hopefully prevents me from
    getting confused again).

 - don't load any bogus hash when we don't use any hash
   operation to begin with.

Cc: [email protected]
Fixes: f2a13e7 ("crypto: crypto4xx - enable AES RFC3686, ECB, CFB and OFB offloads")
Signed-off-by: Christian Lamparter <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 7e92e17 upstream.

Currently, crypto4xx CFB and OFB AES ciphers are
failing testmgr's test vectors.

|cfb-aes-ppc4xx encryption overran dst buffer on test vector 3, cfg="in-place"
|ofb-aes-ppc4xx encryption overran dst buffer on test vector 1, cfg="in-place"

This is because of a very subtile "bug" in the hardware that
gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
of the hardware spec:

the OFB and CFB modes for AES are listed there as operation
modes for >>> "Block ciphers" <<<. Which kind of makes sense,
but we would like them to be considered as stream ciphers just
like the CTR mode.

To workaround this issue and stop the hardware from causing
"overran dst buffer" on crypttexts that are not a multiple
of 16 (AES_BLOCK_SIZE), we force the driver to use the scatter
buffers as the go-between.

As a bonus this patch also kills redundant pd_uinfo->num_gd
and pd_uinfo->num_sd setters since the value has already been
set before.

Cc: [email protected]
Fixes: f2a13e7 ("crypto: crypto4xx - enable AES RFC3686, ECB, CFB and OFB offloads")
Signed-off-by: Christian Lamparter <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit edaf28e upstream.

If the user-provided IV needs to be aligned to the algorithm's
alignmask, then skcipher_walk_virt() copies the IV into a new aligned
buffer walk.iv.  But skcipher_walk_virt() can fail afterwards, and then
if the caller unconditionally accesses walk.iv, it's a use-after-free.

salsa20-generic doesn't set an alignmask, so currently it isn't affected
by this despite unconditionally accessing walk.iv.  However this is more
subtle than desired, and it was actually broken prior to the alignmask
being removed by commit b62b3db ("crypto: salsa20-generic - cleanup
and convert to skcipher API").

Since salsa20-generic does not update the IV and does not need any IV
alignment, update it to use req->iv instead of walk.iv.

Fixes: 2407d60 ("[CRYPTO] salsa20: Salsa20 stream cipher")
Cc: [email protected]
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 5e27f38 upstream.

If the rfc7539 template is instantiated with specific implementations,
e.g. "rfc7539(chacha20-generic,poly1305-generic)" rather than
"rfc7539(chacha20,poly1305)", then the implementation names end up
included in the instance's cra_name.  This is incorrect because it then
prevents all users from allocating "rfc7539(chacha20,poly1305)", if the
highest priority implementations of chacha20 and poly1305 were selected.
Also, the self-tests aren't run on an instance allocated in this way.

Fix it by setting the instance's cra_name from the underlying
algorithms' actual cra_names, rather than from the requested names.
This matches what other templates do.

Fixes: 71ebc4d ("crypto: chacha20poly1305 - Add a ChaCha20-Poly1305 AEAD construction, RFC7539")
Cc: <[email protected]> # v4.2+
Cc: Martin Willi <[email protected]>
Signed-off-by: Eric Biggers <[email protected]>
Reviewed-by: Martin Willi <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f5a2aeb upstream.

Currently, we free the psp_master if the PLATFORM_INIT fails during the
SEV FW probe. If psp_master is freed then driver does not invoke the PSP
FW. As per SEV FW spec, there are several commands (PLATFORM_RESET,
PLATFORM_STATUS, GET_ID etc) which can be executed in the UNINIT state
We should not free the psp_master when PLATFORM_INIT fails.

Fixes: 200664d ("crypto: ccp: Add SEV support")
Cc: Tom Lendacky <[email protected]>
Cc: Herbert Xu <[email protected]>
Cc: Gary Hook <[email protected]>
Cc: [email protected] # 4.19.y
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit dcf7b48 upstream.

The original assembly imported from OpenSSL has two copy-paste
errors in handling CTR mode. When dealing with a 2 or 3 block tail,
the code branches to the CBC decryption exit path, rather than to
the CTR exit path.

This leads to corruption of the IV, which leads to subsequent blocks
being corrupted.

This can be detected with libkcapi test suite, which is available at
https://github.com/smuellerDD/libkcapi

Reported-by: Ondrej Mosnáček <[email protected]>
Fixes: 5c380d6 ("crypto: vmx - Add support for VMS instructions by ASM")
Cc: [email protected]
Signed-off-by: Daniel Axtens <[email protected]>
Tested-by: Michael Ellerman <[email protected]>
Tested-by: Ondrej Mosnacek <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit dcaca01 upstream.

skcipher_walk_done() assumes it's a bug if, after the "slow" path is
executed where the next chunk of data is processed via a bounce buffer,
the algorithm says it didn't process all bytes.  Thus it WARNs on this.

However, this can happen legitimately when the message needs to be
evenly divisible into "blocks" but isn't, and the algorithm has a
'walksize' greater than the block size.  For example, ecb-aes-neonbs
sets 'walksize' to 128 bytes and only supports messages evenly divisible
into 16-byte blocks.  If, say, 17 message bytes remain but they straddle
scatterlist elements, the skcipher_walk code will take the "slow" path
and pass the algorithm all 17 bytes in the bounce buffer.  But the
algorithm will only be able to process 16 bytes, triggering the WARN.

Fix this by just removing the WARN_ON().  Returning -EINVAL, as the code
already does, is the right behavior.

This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.

Fixes: b286d8b ("crypto: skcipher - Add skcipher walk interface")
Cc: <[email protected]> # v4.10+
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 307508d upstream.

The ->digest() method of crct10dif-generic reads the current CRC value
from the shash_desc context.  But this value is uninitialized, causing
crypto_shash_digest() to compute the wrong result.  Fix it.

Probably this wasn't noticed before because lib/crc-t10dif.c only uses
crypto_shash_update(), not crypto_shash_digest().  Likewise,
crypto_shash_digest() is not yet tested by the crypto self-tests because
those only test the ahash API which only uses shash init/update/final.

This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.

Fixes: 2d31e51 ("crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework")
Cc: <[email protected]> # v3.11+
Cc: Tim Chen <[email protected]>
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit dec3d0b upstream.

The ->digest() method of crct10dif-pclmul reads the current CRC value
from the shash_desc context.  But this value is uninitialized, causing
crypto_shash_digest() to compute the wrong result.  Fix it.

Probably this wasn't noticed before because lib/crc-t10dif.c only uses
crypto_shash_update(), not crypto_shash_digest().  Likewise,
crypto_shash_digest() is not yet tested by the crypto self-tests because
those only test the ahash API which only uses shash init/update/final.

Fixes: 0b95a7f ("crypto: crct10dif - Glue code to cast accelerated CRCT10DIF assembly as a crypto transform")
Cc: <[email protected]> # v3.11+
Cc: Tim Chen <[email protected]>
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 580e295 upstream.

The arm64 gcm-aes-ce algorithm is failing the extra crypto self-tests
following my patches to test the !may_use_simd() code paths, which
previously were untested.  The problem is that in the !may_use_simd()
case, an odd number of AES blocks can be processed within each step of
the skcipher_walk.  However, the skcipher_walk is being done with a
"stride" of 2 blocks and is advanced by an even number of blocks after
each step.  This causes the encryption to produce the wrong ciphertext
and authentication tag, and causes the decryption to incorrectly fail.

Fix it by only processing an even number of blocks per step.

Fixes: c2b24c3 ("crypto: arm64/aes-gcm-ce - fix scatterwalk API violation")
Fixes: 71e52c2 ("crypto: arm64/aes-ce-gcm - operate on two input blocks at a time")
Cc: <[email protected]> # v4.19+
Signed-off-by: Eric Biggers <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f699594 upstream.

GCM instances can be created by either the "gcm" template, which only
allows choosing the block cipher, e.g. "gcm(aes)"; or by "gcm_base",
which allows choosing the ctr and ghash implementations, e.g.
"gcm_base(ctr(aes-generic),ghash-generic)".

However, a "gcm_base" instance prevents a "gcm" instance from being
registered using the same implementations.  Nor will the instance be
found by lookups of "gcm".  This can be used as a denial of service.
Moreover, "gcm_base" instances are never tested by the crypto
self-tests, even if there are compatible "gcm" tests.

The root cause of these problems is that instances of the two templates
use different cra_names.  Therefore, fix these problems by making
"gcm_base" instances set the same cra_name as "gcm" instances, e.g.
"gcm(aes)" instead of "gcm_base(ctr(aes-generic),ghash-generic)".

This requires extracting the block cipher name from the name of the ctr
algorithm.  It also requires starting to verify that the algorithms are
really ctr and ghash, not something else entirely.  But it would be
bizarre if anyone were actually using non-gcm-compatible algorithms with
gcm_base, so this shouldn't break anyone in practice.

Fixes: d00aa19 ("[CRYPTO] gcm: Allow block cipher parameter")
Cc: [email protected]
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f0cfd57 upstream.

The Kernel Crypto API request output the next IV data to
IV buffer for CBC implementation. So the last block data of
ciphertext should be copid into assigned IV buffer.

Reported-by: Eric Biggers <[email protected]>
Fixes: 433cd2c ("crypto: rockchip - add crypto driver for rk3288")
Cc: <[email protected]> # v4.5+
Signed-off-by: Zhang Zhijie <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 767f015 upstream.

If the user-provided IV needs to be aligned to the algorithm's
alignmask, then skcipher_walk_virt() copies the IV into a new aligned
buffer walk.iv.  But skcipher_walk_virt() can fail afterwards, and then
if the caller unconditionally accesses walk.iv, it's a use-after-free.

arm32 xts-aes-neonbs doesn't set an alignmask, so currently it isn't
affected by this despite unconditionally accessing walk.iv.  However
this is more subtle than desired, and it was actually broken prior to
the alignmask being removed by commit cc477bf ("crypto: arm/aes -
replace bit-sliced OpenSSL NEON code").  Thus, update xts-aes-neonbs to
start checking the return value of skcipher_walk_virt().

Fixes: e4e7f10 ("ARM: add support for bit sliced AES using NEON instructions")
Cc: <[email protected]> # v3.13+
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: Herbert Xu <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Sean Christopherson and others added 12 commits May 22, 2019 07:37
commit ee66e45 upstream.

...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns.  Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.

Fixes: c5ce823 ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <[email protected]>
Cc: Wanpeng Li <[email protected]>
Reviewed-by: Liran Alon <[email protected]>
Signed-off-by: Sean Christopherson <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit d2f8ae0 upstream.

syncconfig is responsible for keeping auto.conf up-to-date, so if it
fails for any reason, the build must be terminated immediately.

However, since commit 9390dff ("kbuild: invoke syncconfig if
include/config/auto.conf.cmd is missing"), Kbuild continues running
even after syncconfig fails.

You can confirm this by intentionally making syncconfig error out:

#  diff --git a/scripts/kconfig/confdata.c b/scripts/kconfig/confdata.c
#  index 08ba146..307b9de 100644
#  --- a/scripts/kconfig/confdata.c
#  +++ b/scripts/kconfig/confdata.c
#  @@ -1023,6 +1023,9 @@ int conf_write_autoconf(int overwrite)
#          FILE *out, *tristate, *out_h;
#          int i;
#
#  +       if (overwrite)
#  +               return 1;
#  +
#          if (!overwrite && is_present(autoconf_name))
#                  return 0;

Then, syncconfig fails, but Make would not stop:

  $ make -s mrproper allyesconfig defconfig
  $ make
  scripts/kconfig/conf  --syncconfig Kconfig

  *** Error during sync of the configuration.

  make[2]: *** [scripts/kconfig/Makefile;69: syncconfig] Error 1
  make[1]: *** [Makefile;557: syncconfig] Error 2
  make: *** [include/config/auto.conf.cmd] Deleting file 'include/config/tristate.conf'
  make: Failed to remake makefile 'include/config/auto.conf'.
    SYSTBL  arch/x86/include/generated/asm/syscalls_32.h
    SYSHDR  arch/x86/include/generated/asm/unistd_32_ia32.h
    SYSHDR  arch/x86/include/generated/asm/unistd_64_x32.h
    SYSTBL  arch/x86/include/generated/asm/syscalls_64.h
  [ continue running ... ]

The reason is in the behavior of a pattern rule with multi-targets.

  %/auto.conf %/auto.conf.cmd %/tristate.conf: $(KCONFIG_CONFIG)
          $(Q)$(MAKE) -f $(srctree)/Makefile syncconfig

GNU Make knows this rule is responsible for making all the three files
simultaneously. As far as examined, auto.conf.cmd is the target in
question when this rule is invoked. It is probably because auto.conf.cmd
is included below the inclusion of auto.conf.

The inclusion of auto.conf is mandatory, while that of auto.conf.cmd
is optional. GNU Make does not care about the failure in the process
of updating optional include files.

I filed this issue (https://savannah.gnu.org/bugs/?56301) in case this
behavior could be improved somehow in future releases of GNU Make.
Anyway, it is quite easy to fix our Makefile.

Given that auto.conf is already a mandatory include file, there is no
reason to stick auto.conf.cmd optional. Make it mandatory as well.

Cc: linux-stable <[email protected]> # 5.0+
Fixes: 9390dff ("kbuild: invoke syncconfig if include/config/auto.conf.cmd is missing")
Signed-off-by: Masahiro Yamada <[email protected]>
[commented out diff above to keep patch happy - gregkh]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit c9f804d upstream.

Or else xen_domain() returns false despite xen_pvh being set.

Signed-off-by: Roger Pau Monné <[email protected]>
Reviewed-by: Boris Ostrovsky <[email protected]>
Signed-off-by: Boris Ostrovsky <[email protected]>
Cc: [email protected] # 4.19+
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit c4703ce upstream.

Users have reported intermittent occurrences of DIMM initialization
failures due to duplicate allocations of address capacity detected in
the labels, or errors of the form below, both have the same root cause.

    nd namespace1.4: failed to track label: 0
    WARNING: CPU: 17 PID: 1381 at drivers/nvdimm/label.c:863

    RIP: 0010:__pmem_label_update+0x56c/0x590 [libnvdimm]
    Call Trace:
     ? nd_pmem_namespace_label_update+0xd6/0x160 [libnvdimm]
     nd_pmem_namespace_label_update+0xd6/0x160 [libnvdimm]
     uuid_store+0x17e/0x190 [libnvdimm]
     kernfs_fop_write+0xf0/0x1a0
     vfs_write+0xb7/0x1b0
     ksys_write+0x57/0xd0
     do_syscall_64+0x60/0x210

Unfortunately those reports were typically with a busy parallel
namespace creation / destruction loop making it difficult to see the
components of the bug. However, Jane provided a simple reproducer using
the work-in-progress sub-section implementation.

When ndctl is reconfiguring a namespace it may take an existing defunct
/ disabled namespace and reconfigure it with a new uuid and other
parameters. Critically namespace_update_uuid() takes existing address
resources and renames them for the new namespace to use / reconfigure as
it sees fit. The bug is that this rename only happens in the resource
tracking tree. Existing labels with the old uuid are not reaped leading
to a scenario where multiple active labels reference the same span of
address range.

Teach namespace_update_uuid() to flag any references to the old uuid for
reaping at the next label update attempt.

Cc: <[email protected]>
Fixes: bf9bccc ("libnvdimm: pmem label sets and namespace instantiation")
Link: pmem/ndctl#91
Reported-by: Jane Chu <[email protected]>
Reported-by: Jeff Moyer <[email protected]>
Reported-by: Erwin Tsaur <[email protected]>
Cc: Johannes Thumshirn <[email protected]>
Signed-off-by: Dan Williams <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 6daef95 upstream.

Avoid cache line miss dereferencing struct page if we can.

page_copy_sane() mostly deals with order-0 pages.

Extra cache line miss is visible on TCP recvmsg() calls dealing
with GRO packets (typically 45 page frags are attached to one skb).

Bringing the 45 struct pages into cpu cache while copying the data
is not free, since the freeing of the skb (and associated
page frags put_page()) can happen after cache lines have been evicted.

Signed-off-by: Eric Dumazet <[email protected]>
Cc: Al Viro <[email protected]>
Signed-off-by: Al Viro <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit cb095af upstream.

In preparation for having additional actions during init/exit, this moves
the init/exit into platform.c, centralizing the logic to make call outs
to the fs init/exit.

Signed-off-by: Kees Cook <[email protected]>
Tested-by: Guenter Roeck <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 4160316 upstream.

ramoops's call of pstore_register() was recently moved to run during
late_initcall() because the crypto backend may not have been ready during
postcore_initcall(). This meant early-boot crash dumps were not getting
caught by pstore any more.

Instead, lets allow calls to pstore_register() earlier, and once crypto
is ready we can initialize the compression.

Reported-by: Sai Prakash Ranjan <[email protected]>
Signed-off-by: Joel Fernandes (Google) <[email protected]>
Tested-by: Sai Prakash Ranjan <[email protected]>
Fixes: cb3bee0 ("pstore: Use crypto compress API")
[kees: trivial rebase]
Signed-off-by: Kees Cook <[email protected]>
Tested-by: Guenter Roeck <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 95047b0 upstream.

This refactors compression initialization slightly to better handle
getting potentially called twice (via early pstore_register() calls
and later pstore_init()) and improves the comments and reporting to be
more verbose.

Signed-off-by: Kees Cook <[email protected]>
Tested-by: Guenter Roeck <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit ddccb6d upstream.

Fix compile error below when using BUFFER_TRACE.

fs/ext4/inode.c: In function ‘ext4_expand_extra_isize’:
fs/ext4/inode.c:5979:19: error: request for member ‘bh’ in something not a structure or union
  BUFFER_TRACE(iloc.bh, "get_write_access");

Fixes: c03b45b ("ext4, project: expand inode extra size if possible")
Signed-off-by: zhangyi (F) <[email protected]>
Signed-off-by: Theodore Ts'o <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit c9e716e upstream.

Don't update the superblock s_rev_level during mount if it isn't
actually necessary, only if superblock features are being set by
the kernel.  This was originally added for ext3 since it always
set the INCOMPAT_RECOVER and HAS_JOURNAL features during mount,
but this is not needed since no journal mode was added to ext4.

That will allow Geert to mount his 20-year-old ext2 rev 0.0 m68k
filesystem, as a testament of the backward compatibility of ext4.

Fixes: 0390131 ("ext4: Allow ext4 to run without a journal")
Signed-off-by: Andreas Dilger <[email protected]>
Signed-off-by: Theodore Ts'o <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
This is the 4.19.45 stable release
@otavio otavio merged commit 0b9ff03 into Freescale:4.19.x+fslc May 24, 2019
gibsson pushed a commit to gibsson/linux-fslc that referenced this pull request Apr 17, 2020
[ Upstream commit dd09fad ]

Commit:

  3a6b6c6 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE initialization common across all architectures")

moved the call to efi_memattr_init() from ARM specific to the generic
EFI init code, in order to be able to apply the restricted permissions
described in that table on x86 as well.

We never enabled this feature fully on i386, and so mapping and
reserving this table is pointless. However, due to the early call to
memblock_reserve(), the memory bookkeeping gets confused to the point
where it produces the splat below when we try to map the memory later
on:

  ------------[ cut here ]------------
  ioremap on RAM at 0x3f251000 - 0x3fa1afff
  WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:166 __ioremap_caller ...
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.20.0 Freescale#48
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  EIP: __ioremap_caller.constprop.0+0x249/0x260
  Code: 90 0f b7 05 4e 38 40 de 09 45 e0 e9 09 ff ff ff 90 8d 45 ec c6 05 ...
  EAX: 00000029 EBX: 00000000 ECX: de59c228 EDX: 00000001
  ESI: 3f250fff EDI: 00000000 EBP: de3edf20 ESP: de3edee0
  DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00200296
  CR0: 80050033 CR2: ffd17000 CR3: 1e58c000 CR4: 00040690
  Call Trace:
   ioremap_cache+0xd/0x10
   ? old_map_region+0x72/0x9d
   old_map_region+0x72/0x9d
   efi_map_region+0x8/0xa
   efi_enter_virtual_mode+0x260/0x43b
   start_kernel+0x329/0x3aa
   i386_start_kernel+0xa7/0xab
   startup_32_smp+0x164/0x168
  ---[ end trace e15ccf6b9f356833 ]---

Let's work around this by disregarding the memory attributes table
altogether on i386, which does not result in a loss of functionality
or protection, given that we never consumed the contents.

Fixes: 3a6b6c6 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE ... ")
Tested-by: Arvind Sankar <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
otavio pushed a commit that referenced this pull request May 6, 2020
[ Upstream commit dd09fad ]

Commit:

  3a6b6c6 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE initialization common across all architectures")

moved the call to efi_memattr_init() from ARM specific to the generic
EFI init code, in order to be able to apply the restricted permissions
described in that table on x86 as well.

We never enabled this feature fully on i386, and so mapping and
reserving this table is pointless. However, due to the early call to
memblock_reserve(), the memory bookkeeping gets confused to the point
where it produces the splat below when we try to map the memory later
on:

  ------------[ cut here ]------------
  ioremap on RAM at 0x3f251000 - 0x3fa1afff
  WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:166 __ioremap_caller ...
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.20.0 #48
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  EIP: __ioremap_caller.constprop.0+0x249/0x260
  Code: 90 0f b7 05 4e 38 40 de 09 45 e0 e9 09 ff ff ff 90 8d 45 ec c6 05 ...
  EAX: 00000029 EBX: 00000000 ECX: de59c228 EDX: 00000001
  ESI: 3f250fff EDI: 00000000 EBP: de3edf20 ESP: de3edee0
  DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00200296
  CR0: 80050033 CR2: ffd17000 CR3: 1e58c000 CR4: 00040690
  Call Trace:
   ioremap_cache+0xd/0x10
   ? old_map_region+0x72/0x9d
   old_map_region+0x72/0x9d
   efi_map_region+0x8/0xa
   efi_enter_virtual_mode+0x260/0x43b
   start_kernel+0x329/0x3aa
   i386_start_kernel+0xa7/0xab
   startup_32_smp+0x164/0x168
  ---[ end trace e15ccf6b9f356833 ]---

Let's work around this by disregarding the memory attributes table
altogether on i386, which does not result in a loss of functionality
or protection, given that we never consumed the contents.

Fixes: 3a6b6c6 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE ... ")
Tested-by: Arvind Sankar <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
otavio pushed a commit that referenced this pull request May 6, 2020
…f fs_info::journal_info

commit fcc9973 upstream.

[BUG]
One run of btrfs/063 triggered the following lockdep warning:
  ============================================
  WARNING: possible recursive locking detected
  5.6.0-rc7-custom+ #48 Not tainted
  --------------------------------------------
  kworker/u24:0/7 is trying to acquire lock:
  ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]

  but task is already holding lock:
  ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(sb_internal#2);
    lock(sb_internal#2);

   *** DEADLOCK ***

   May be due to missing lock nesting notation

  4 locks held by kworker/u24:0/7:
   #0: ffff88817b495948 ((wq_completion)btrfs-endio-write){+.+.}, at: process_one_work+0x557/0xb80
   #1: ffff888189ea7db8 ((work_completion)(&work->normal_work)){+.+.}, at: process_one_work+0x557/0xb80
   #2: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]
   #3: ffff888174ca4da8 (&fs_info->reloc_mutex){+.+.}, at: btrfs_record_root_in_trans+0x83/0xd0 [btrfs]

  stack backtrace:
  CPU: 0 PID: 7 Comm: kworker/u24:0 Not tainted 5.6.0-rc7-custom+ #48
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
  Call Trace:
   dump_stack+0xc2/0x11a
   __lock_acquire.cold+0xce/0x214
   lock_acquire+0xe6/0x210
   __sb_start_write+0x14e/0x290
   start_transaction+0x66c/0x890 [btrfs]
   btrfs_join_transaction+0x1d/0x20 [btrfs]
   find_free_extent+0x1504/0x1a50 [btrfs]
   btrfs_reserve_extent+0xd5/0x1f0 [btrfs]
   btrfs_alloc_tree_block+0x1ac/0x570 [btrfs]
   btrfs_copy_root+0x213/0x580 [btrfs]
   create_reloc_root+0x3bd/0x470 [btrfs]
   btrfs_init_reloc_root+0x2d2/0x310 [btrfs]
   record_root_in_trans+0x191/0x1d0 [btrfs]
   btrfs_record_root_in_trans+0x90/0xd0 [btrfs]
   start_transaction+0x16e/0x890 [btrfs]
   btrfs_join_transaction+0x1d/0x20 [btrfs]
   btrfs_finish_ordered_io+0x55d/0xcd0 [btrfs]
   finish_ordered_fn+0x15/0x20 [btrfs]
   btrfs_work_helper+0x116/0x9a0 [btrfs]
   process_one_work+0x632/0xb80
   worker_thread+0x80/0x690
   kthread+0x1a3/0x1f0
   ret_from_fork+0x27/0x50

It's pretty hard to reproduce, only one hit so far.

[CAUSE]
This is because we're calling btrfs_join_transaction() without re-using
the current running one:

btrfs_finish_ordered_io()
|- btrfs_join_transaction()		<<< Call #1
   |- btrfs_record_root_in_trans()
      |- btrfs_reserve_extent()
	 |- btrfs_join_transaction()	<<< Call #2

Normally such btrfs_join_transaction() call should re-use the existing
one, without trying to re-start a transaction.

But the problem is, in btrfs_join_transaction() call #1, we call
btrfs_record_root_in_trans() before initializing current::journal_info.

And in btrfs_join_transaction() call #2, we're relying on
current::journal_info to avoid such deadlock.

[FIX]
Call btrfs_record_root_in_trans() after we have initialized
current::journal_info.

CC: [email protected] # 4.4+
Signed-off-by: Qu Wenruo <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 6, 2020
…f fs_info::journal_info

commit fcc9973 upstream.

[BUG]
One run of btrfs/063 triggered the following lockdep warning:
  ============================================
  WARNING: possible recursive locking detected
  5.6.0-rc7-custom+ Freescale#48 Not tainted
  --------------------------------------------
  kworker/u24:0/7 is trying to acquire lock:
  ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]

  but task is already holding lock:
  ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(sb_internal#2);
    lock(sb_internal#2);

   *** DEADLOCK ***

   May be due to missing lock nesting notation

  4 locks held by kworker/u24:0/7:
   #0: ffff88817b495948 ((wq_completion)btrfs-endio-write){+.+.}, at: process_one_work+0x557/0xb80
   Freescale#1: ffff888189ea7db8 ((work_completion)(&work->normal_work)){+.+.}, at: process_one_work+0x557/0xb80
   Freescale#2: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]
   Freescale#3: ffff888174ca4da8 (&fs_info->reloc_mutex){+.+.}, at: btrfs_record_root_in_trans+0x83/0xd0 [btrfs]

  stack backtrace:
  CPU: 0 PID: 7 Comm: kworker/u24:0 Not tainted 5.6.0-rc7-custom+ Freescale#48
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
  Call Trace:
   dump_stack+0xc2/0x11a
   __lock_acquire.cold+0xce/0x214
   lock_acquire+0xe6/0x210
   __sb_start_write+0x14e/0x290
   start_transaction+0x66c/0x890 [btrfs]
   btrfs_join_transaction+0x1d/0x20 [btrfs]
   find_free_extent+0x1504/0x1a50 [btrfs]
   btrfs_reserve_extent+0xd5/0x1f0 [btrfs]
   btrfs_alloc_tree_block+0x1ac/0x570 [btrfs]
   btrfs_copy_root+0x213/0x580 [btrfs]
   create_reloc_root+0x3bd/0x470 [btrfs]
   btrfs_init_reloc_root+0x2d2/0x310 [btrfs]
   record_root_in_trans+0x191/0x1d0 [btrfs]
   btrfs_record_root_in_trans+0x90/0xd0 [btrfs]
   start_transaction+0x16e/0x890 [btrfs]
   btrfs_join_transaction+0x1d/0x20 [btrfs]
   btrfs_finish_ordered_io+0x55d/0xcd0 [btrfs]
   finish_ordered_fn+0x15/0x20 [btrfs]
   btrfs_work_helper+0x116/0x9a0 [btrfs]
   process_one_work+0x632/0xb80
   worker_thread+0x80/0x690
   kthread+0x1a3/0x1f0
   ret_from_fork+0x27/0x50

It's pretty hard to reproduce, only one hit so far.

[CAUSE]
This is because we're calling btrfs_join_transaction() without re-using
the current running one:

btrfs_finish_ordered_io()
|- btrfs_join_transaction()		<<< Call Freescale#1
   |- btrfs_record_root_in_trans()
      |- btrfs_reserve_extent()
	 |- btrfs_join_transaction()	<<< Call Freescale#2

Normally such btrfs_join_transaction() call should re-use the existing
one, without trying to re-start a transaction.

But the problem is, in btrfs_join_transaction() call Freescale#1, we call
btrfs_record_root_in_trans() before initializing current::journal_info.

And in btrfs_join_transaction() call Freescale#2, we're relying on
current::journal_info to avoid such deadlock.

[FIX]
Call btrfs_record_root_in_trans() after we have initialized
current::journal_info.

CC: [email protected] # 4.4+
Signed-off-by: Qu Wenruo <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gibsson pushed a commit to gibsson/linux-fslc that referenced this pull request Jul 29, 2020
commit f4c23a1 upstream.

I got null-ptr-deref in serial8250_start_tx():

[   78.114630] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[   78.123778] Mem abort info:
[   78.126560]   ESR = 0x86000007
[   78.129603]   EC = 0x21: IABT (current EL), IL = 32 bits
[   78.134891]   SET = 0, FnV = 0
[   78.137933]   EA = 0, S1PTW = 0
[   78.141064] user pgtable: 64k pages, 48-bit VAs, pgdp=00000027d41a8600
[   78.147562] [0000000000000000] pgd=00000027893f0003, p4d=00000027893f0003, pud=00000027893f0003, pmd=00000027c9a20003, pte=0000000000000000
[   78.160029] Internal error: Oops: 86000007 [Freescale#1] SMP
[   78.164886] Modules linked in: sunrpc vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce ses enclosure sg sbsa_gwdt ipmi_ssif spi_dw_mmio sch_fq_codel vhost_net tun vhost vhost_iotlb tap ip_tables ext4 mbcache jbd2 ahci hisi_sas_v3_hw libahci hisi_sas_main libsas hns3 scsi_transport_sas hclge libata megaraid_sas ipmi_si hnae3 ipmi_devintf ipmi_msghandler br_netfilter bridge stp llc nvme nvme_core xt_sctp sctp libcrc32c dm_mod nbd
[   78.207383] CPU: 11 PID: 23258 Comm: null-ptr Not tainted 5.8.0-rc6+ Freescale#48
[   78.214056] Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V3.B210.01 03/12/2020
[   78.222888] pstate: 80400089 (Nzcv daIf +PAN -UAO BTYPE=--)
[   78.228435] pc : 0x0
[   78.230618] lr : serial8250_start_tx+0x160/0x260
[   78.235215] sp : ffff800062eefb80
[   78.238517] x29: ffff800062eefb80 x28: 0000000000000fff
[   78.243807] x27: ffff800062eefd80 x26: ffff202fd83b3000
[   78.249098] x25: ffff800062eefd80 x24: ffff202fd83b3000
[   78.254388] x23: ffff002fc5e50be8 x22: 0000000000000002
[   78.259679] x21: 0000000000000001 x20: 0000000000000000
[   78.264969] x19: ffffa688827eecc8 x18: 0000000000000000
[   78.270259] x17: 0000000000000000 x16: 0000000000000000
[   78.275550] x15: ffffa68881bc67a8 x14: 00000000000002e6
[   78.280841] x13: ffffa68881bc67a8 x12: 000000000000c539
[   78.286131] x11: d37a6f4de9bd37a7 x10: ffffa68881cccff0
[   78.291421] x9 : ffffa68881bc6000 x8 : ffffa688819daa88
[   78.296711] x7 : ffffa688822a0f20 x6 : ffffa688819e0000
[   78.302002] x5 : ffff800062eef9d0 x4 : ffffa68881e707a8
[   78.307292] x3 : 0000000000000000 x2 : 0000000000000002
[   78.312582] x1 : 0000000000000001 x0 : ffffa688827eecc8
[   78.317873] Call trace:
[   78.320312]  0x0
[   78.322147]  __uart_start.isra.9+0x64/0x78
[   78.326229]  uart_start+0xb8/0x1c8
[   78.329620]  uart_flush_chars+0x24/0x30
[   78.333442]  n_tty_receive_buf_common+0x7b0/0xc30
[   78.338128]  n_tty_receive_buf+0x44/0x2c8
[   78.342122]  tty_ioctl+0x348/0x11f8
[   78.345599]  ksys_ioctl+0xd8/0xf8
[   78.348903]  __arm64_sys_ioctl+0x2c/0xc8
[   78.352812]  el0_svc_common.constprop.2+0x88/0x1b0
[   78.357583]  do_el0_svc+0x44/0xd0
[   78.360887]  el0_sync_handler+0x14c/0x1d0
[   78.364880]  el0_sync+0x140/0x180
[   78.368185] Code: bad PC value

SERIAL_PORT_DFNS is not defined on each arch, if it's not defined,
serial8250_set_defaults() won't be called in serial8250_isa_init_ports(),
so the p->serial_in pointer won't be initialized, and it leads a null-ptr-deref.
Fix this problem by calling serial8250_set_defaults() after init uart port.

Signed-off-by: Yang Yingliang <[email protected]>
Cc: stable <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
LeBlue pushed a commit to LeBlue/linux-fslc that referenced this pull request Oct 23, 2020
commit f4c23a1 upstream.

I got null-ptr-deref in serial8250_start_tx():

[   78.114630] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[   78.123778] Mem abort info:
[   78.126560]   ESR = 0x86000007
[   78.129603]   EC = 0x21: IABT (current EL), IL = 32 bits
[   78.134891]   SET = 0, FnV = 0
[   78.137933]   EA = 0, S1PTW = 0
[   78.141064] user pgtable: 64k pages, 48-bit VAs, pgdp=00000027d41a8600
[   78.147562] [0000000000000000] pgd=00000027893f0003, p4d=00000027893f0003, pud=00000027893f0003, pmd=00000027c9a20003, pte=0000000000000000
[   78.160029] Internal error: Oops: 86000007 [Freescale#1] SMP
[   78.164886] Modules linked in: sunrpc vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce ses enclosure sg sbsa_gwdt ipmi_ssif spi_dw_mmio sch_fq_codel vhost_net tun vhost vhost_iotlb tap ip_tables ext4 mbcache jbd2 ahci hisi_sas_v3_hw libahci hisi_sas_main libsas hns3 scsi_transport_sas hclge libata megaraid_sas ipmi_si hnae3 ipmi_devintf ipmi_msghandler br_netfilter bridge stp llc nvme nvme_core xt_sctp sctp libcrc32c dm_mod nbd
[   78.207383] CPU: 11 PID: 23258 Comm: null-ptr Not tainted 5.8.0-rc6+ Freescale#48
[   78.214056] Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V3.B210.01 03/12/2020
[   78.222888] pstate: 80400089 (Nzcv daIf +PAN -UAO BTYPE=--)
[   78.228435] pc : 0x0
[   78.230618] lr : serial8250_start_tx+0x160/0x260
[   78.235215] sp : ffff800062eefb80
[   78.238517] x29: ffff800062eefb80 x28: 0000000000000fff
[   78.243807] x27: ffff800062eefd80 x26: ffff202fd83b3000
[   78.249098] x25: ffff800062eefd80 x24: ffff202fd83b3000
[   78.254388] x23: ffff002fc5e50be8 x22: 0000000000000002
[   78.259679] x21: 0000000000000001 x20: 0000000000000000
[   78.264969] x19: ffffa688827eecc8 x18: 0000000000000000
[   78.270259] x17: 0000000000000000 x16: 0000000000000000
[   78.275550] x15: ffffa68881bc67a8 x14: 00000000000002e6
[   78.280841] x13: ffffa68881bc67a8 x12: 000000000000c539
[   78.286131] x11: d37a6f4de9bd37a7 x10: ffffa68881cccff0
[   78.291421] x9 : ffffa68881bc6000 x8 : ffffa688819daa88
[   78.296711] x7 : ffffa688822a0f20 x6 : ffffa688819e0000
[   78.302002] x5 : ffff800062eef9d0 x4 : ffffa68881e707a8
[   78.307292] x3 : 0000000000000000 x2 : 0000000000000002
[   78.312582] x1 : 0000000000000001 x0 : ffffa688827eecc8
[   78.317873] Call trace:
[   78.320312]  0x0
[   78.322147]  __uart_start.isra.9+0x64/0x78
[   78.326229]  uart_start+0xb8/0x1c8
[   78.329620]  uart_flush_chars+0x24/0x30
[   78.333442]  n_tty_receive_buf_common+0x7b0/0xc30
[   78.338128]  n_tty_receive_buf+0x44/0x2c8
[   78.342122]  tty_ioctl+0x348/0x11f8
[   78.345599]  ksys_ioctl+0xd8/0xf8
[   78.348903]  __arm64_sys_ioctl+0x2c/0xc8
[   78.352812]  el0_svc_common.constprop.2+0x88/0x1b0
[   78.357583]  do_el0_svc+0x44/0xd0
[   78.360887]  el0_sync_handler+0x14c/0x1d0
[   78.364880]  el0_sync+0x140/0x180
[   78.368185] Code: bad PC value

SERIAL_PORT_DFNS is not defined on each arch, if it's not defined,
serial8250_set_defaults() won't be called in serial8250_isa_init_ports(),
so the p->serial_in pointer won't be initialized, and it leads a null-ptr-deref.
Fix this problem by calling serial8250_set_defaults() after init uart port.

Signed-off-by: Yang Yingliang <[email protected]>
Cc: stable <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 14, 2021
[ Upstream commit 0f20615 ]

Fix BPF_CORE_READ_BITFIELD() macro used for reading CO-RE-relocatable
bitfields. Missing breaks in a switch caused 8-byte reads always. This can
confuse libbpf because it does strict checks that memory load size corresponds
to the original size of the field, which in this case quite often would be
wrong.

After fixing that, we run into another problem, which quite subtle, so worth
documenting here. The issue is in Clang optimization and CO-RE relocation
interactions. Without that asm volatile construct (also known as
barrier_var()), Clang will re-order BYTE_OFFSET and BYTE_SIZE relocations and
will apply BYTE_OFFSET 4 times for each switch case arm. This will result in
the same error from libbpf about mismatch of memory load size and original
field size. I.e., if we were reading u32, we'd still have *(u8 *), *(u16 *),
*(u32 *), and *(u64 *) memory loads, three of which will fail. Using
barrier_var() forces Clang to apply BYTE_OFFSET relocation first (and once) to
calculate p, after which value of p is used without relocation in each of
switch case arms, doing appropiately-sized memory load.

Here's the list of relevant relocations and pieces of generated BPF code
before and after this patch for test_core_reloc_bitfields_direct selftests.

BEFORE
=====
 Freescale#45: core_reloc: insn Freescale#160 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32
 Freescale#46: core_reloc: insn Freescale#167 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#47: core_reloc: insn Freescale#174 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#48: core_reloc: insn Freescale#178 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#49: core_reloc: insn Freescale#182 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32

     157:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
     159:       7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1
     160:       b7 02 00 00 04 00 00 00 r2 = 4
; BYTE_SIZE relocation here                 ^^^
     161:       66 02 07 00 03 00 00 00 if w2 s> 3 goto +7 <LBB0_63>
     162:       16 02 0d 00 01 00 00 00 if w2 == 1 goto +13 <LBB0_65>
     163:       16 02 01 00 02 00 00 00 if w2 == 2 goto +1 <LBB0_66>
     164:       05 00 12 00 00 00 00 00 goto +18 <LBB0_69>

0000000000000528 <LBB0_66>:
     165:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     167:       69 11 08 00 00 00 00 00 r1 = *(u16 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     168:       05 00 0e 00 00 00 00 00 goto +14 <LBB0_69>

0000000000000548 <LBB0_63>:
     169:       16 02 0a 00 04 00 00 00 if w2 == 4 goto +10 <LBB0_67>
     170:       16 02 01 00 08 00 00 00 if w2 == 8 goto +1 <LBB0_68>
     171:       05 00 0b 00 00 00 00 00 goto +11 <LBB0_69>

0000000000000560 <LBB0_68>:
     172:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     174:       79 11 08 00 00 00 00 00 r1 = *(u64 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     175:       05 00 07 00 00 00 00 00 goto +7 <LBB0_69>

0000000000000580 <LBB0_65>:
     176:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     178:       71 11 08 00 00 00 00 00 r1 = *(u8 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     179:       05 00 03 00 00 00 00 00 goto +3 <LBB0_69>

00000000000005a0 <LBB0_67>:
     180:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     182:       61 11 08 00 00 00 00 00 r1 = *(u32 *)(r1 + 8)
; BYTE_OFFSET relo here w/ RIGHT size        ^^^^^^^^^^^^^^^^

00000000000005b8 <LBB0_69>:
     183:       67 01 00 00 20 00 00 00 r1 <<= 32
     184:       b7 02 00 00 00 00 00 00 r2 = 0
     185:       16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71>
     186:       c7 01 00 00 20 00 00 00 r1 s>>= 32
     187:       05 00 01 00 00 00 00 00 goto +1 <LBB0_72>

00000000000005e0 <LBB0_71>:
     188:       77 01 00 00 20 00 00 00 r1 >>= 32

AFTER
=====

 Freescale#30: core_reloc: insn Freescale#132 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#31: core_reloc: insn Freescale#134 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32

     129:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
     131:       7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1
     132:       b7 01 00 00 08 00 00 00 r1 = 8
; BYTE_OFFSET relo here                     ^^^
; no size check for non-memory dereferencing instructions
     133:       0f 12 00 00 00 00 00 00 r2 += r1
     134:       b7 03 00 00 04 00 00 00 r3 = 4
; BYTE_SIZE relocation here                 ^^^
     135:       66 03 05 00 03 00 00 00 if w3 s> 3 goto +5 <LBB0_63>
     136:       16 03 09 00 01 00 00 00 if w3 == 1 goto +9 <LBB0_65>
     137:       16 03 01 00 02 00 00 00 if w3 == 2 goto +1 <LBB0_66>
     138:       05 00 0a 00 00 00 00 00 goto +10 <LBB0_69>

0000000000000458 <LBB0_66>:
     139:       69 21 00 00 00 00 00 00 r1 = *(u16 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     140:       05 00 08 00 00 00 00 00 goto +8 <LBB0_69>

0000000000000468 <LBB0_63>:
     141:       16 03 06 00 04 00 00 00 if w3 == 4 goto +6 <LBB0_67>
     142:       16 03 01 00 08 00 00 00 if w3 == 8 goto +1 <LBB0_68>
     143:       05 00 05 00 00 00 00 00 goto +5 <LBB0_69>

0000000000000480 <LBB0_68>:
     144:       79 21 00 00 00 00 00 00 r1 = *(u64 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     145:       05 00 03 00 00 00 00 00 goto +3 <LBB0_69>

0000000000000490 <LBB0_65>:
     146:       71 21 00 00 00 00 00 00 r1 = *(u8 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     147:       05 00 01 00 00 00 00 00 goto +1 <LBB0_69>

00000000000004a0 <LBB0_67>:
     148:       61 21 00 00 00 00 00 00 r1 = *(u32 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^

00000000000004a8 <LBB0_69>:
     149:       67 01 00 00 20 00 00 00 r1 <<= 32
     150:       b7 02 00 00 00 00 00 00 r2 = 0
     151:       16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71>
     152:       c7 01 00 00 20 00 00 00 r1 s>>= 32
     153:       05 00 01 00 00 00 00 00 goto +1 <LBB0_72>

00000000000004d0 <LBB0_71>:
     154:       77 01 00 00 20 00 00 00 r1 >>= 323

Fixes: ee26dad ("libbpf: Add support for relocatable bitfields")
Signed-off-by: Andrii Nakryiko <[email protected]>
Signed-off-by: Alexei Starovoitov <[email protected]>
Acked-by: Lorenz Bauer <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 14, 2021
[ Upstream commit 0f20615 ]

Fix BPF_CORE_READ_BITFIELD() macro used for reading CO-RE-relocatable
bitfields. Missing breaks in a switch caused 8-byte reads always. This can
confuse libbpf because it does strict checks that memory load size corresponds
to the original size of the field, which in this case quite often would be
wrong.

After fixing that, we run into another problem, which quite subtle, so worth
documenting here. The issue is in Clang optimization and CO-RE relocation
interactions. Without that asm volatile construct (also known as
barrier_var()), Clang will re-order BYTE_OFFSET and BYTE_SIZE relocations and
will apply BYTE_OFFSET 4 times for each switch case arm. This will result in
the same error from libbpf about mismatch of memory load size and original
field size. I.e., if we were reading u32, we'd still have *(u8 *), *(u16 *),
*(u32 *), and *(u64 *) memory loads, three of which will fail. Using
barrier_var() forces Clang to apply BYTE_OFFSET relocation first (and once) to
calculate p, after which value of p is used without relocation in each of
switch case arms, doing appropiately-sized memory load.

Here's the list of relevant relocations and pieces of generated BPF code
before and after this patch for test_core_reloc_bitfields_direct selftests.

BEFORE
=====
 Freescale#45: core_reloc: insn Freescale#160 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32
 Freescale#46: core_reloc: insn Freescale#167 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#47: core_reloc: insn Freescale#174 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#48: core_reloc: insn Freescale#178 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#49: core_reloc: insn Freescale#182 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32

     157:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
     159:       7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1
     160:       b7 02 00 00 04 00 00 00 r2 = 4
; BYTE_SIZE relocation here                 ^^^
     161:       66 02 07 00 03 00 00 00 if w2 s> 3 goto +7 <LBB0_63>
     162:       16 02 0d 00 01 00 00 00 if w2 == 1 goto +13 <LBB0_65>
     163:       16 02 01 00 02 00 00 00 if w2 == 2 goto +1 <LBB0_66>
     164:       05 00 12 00 00 00 00 00 goto +18 <LBB0_69>

0000000000000528 <LBB0_66>:
     165:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     167:       69 11 08 00 00 00 00 00 r1 = *(u16 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     168:       05 00 0e 00 00 00 00 00 goto +14 <LBB0_69>

0000000000000548 <LBB0_63>:
     169:       16 02 0a 00 04 00 00 00 if w2 == 4 goto +10 <LBB0_67>
     170:       16 02 01 00 08 00 00 00 if w2 == 8 goto +1 <LBB0_68>
     171:       05 00 0b 00 00 00 00 00 goto +11 <LBB0_69>

0000000000000560 <LBB0_68>:
     172:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     174:       79 11 08 00 00 00 00 00 r1 = *(u64 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     175:       05 00 07 00 00 00 00 00 goto +7 <LBB0_69>

0000000000000580 <LBB0_65>:
     176:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     178:       71 11 08 00 00 00 00 00 r1 = *(u8 *)(r1 + 8)
; BYTE_OFFSET relo here w/ WRONG size        ^^^^^^^^^^^^^^^^
     179:       05 00 03 00 00 00 00 00 goto +3 <LBB0_69>

00000000000005a0 <LBB0_67>:
     180:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
     182:       61 11 08 00 00 00 00 00 r1 = *(u32 *)(r1 + 8)
; BYTE_OFFSET relo here w/ RIGHT size        ^^^^^^^^^^^^^^^^

00000000000005b8 <LBB0_69>:
     183:       67 01 00 00 20 00 00 00 r1 <<= 32
     184:       b7 02 00 00 00 00 00 00 r2 = 0
     185:       16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71>
     186:       c7 01 00 00 20 00 00 00 r1 s>>= 32
     187:       05 00 01 00 00 00 00 00 goto +1 <LBB0_72>

00000000000005e0 <LBB0_71>:
     188:       77 01 00 00 20 00 00 00 r1 >>= 32

AFTER
=====

 Freescale#30: core_reloc: insn Freescale#132 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32
 Freescale#31: core_reloc: insn Freescale#134 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32

     129:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
     131:       7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1
     132:       b7 01 00 00 08 00 00 00 r1 = 8
; BYTE_OFFSET relo here                     ^^^
; no size check for non-memory dereferencing instructions
     133:       0f 12 00 00 00 00 00 00 r2 += r1
     134:       b7 03 00 00 04 00 00 00 r3 = 4
; BYTE_SIZE relocation here                 ^^^
     135:       66 03 05 00 03 00 00 00 if w3 s> 3 goto +5 <LBB0_63>
     136:       16 03 09 00 01 00 00 00 if w3 == 1 goto +9 <LBB0_65>
     137:       16 03 01 00 02 00 00 00 if w3 == 2 goto +1 <LBB0_66>
     138:       05 00 0a 00 00 00 00 00 goto +10 <LBB0_69>

0000000000000458 <LBB0_66>:
     139:       69 21 00 00 00 00 00 00 r1 = *(u16 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     140:       05 00 08 00 00 00 00 00 goto +8 <LBB0_69>

0000000000000468 <LBB0_63>:
     141:       16 03 06 00 04 00 00 00 if w3 == 4 goto +6 <LBB0_67>
     142:       16 03 01 00 08 00 00 00 if w3 == 8 goto +1 <LBB0_68>
     143:       05 00 05 00 00 00 00 00 goto +5 <LBB0_69>

0000000000000480 <LBB0_68>:
     144:       79 21 00 00 00 00 00 00 r1 = *(u64 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     145:       05 00 03 00 00 00 00 00 goto +3 <LBB0_69>

0000000000000490 <LBB0_65>:
     146:       71 21 00 00 00 00 00 00 r1 = *(u8 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^
     147:       05 00 01 00 00 00 00 00 goto +1 <LBB0_69>

00000000000004a0 <LBB0_67>:
     148:       61 21 00 00 00 00 00 00 r1 = *(u32 *)(r2 + 0)
; NO CO-RE relocation here                   ^^^^^^^^^^^^^^^^

00000000000004a8 <LBB0_69>:
     149:       67 01 00 00 20 00 00 00 r1 <<= 32
     150:       b7 02 00 00 00 00 00 00 r2 = 0
     151:       16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71>
     152:       c7 01 00 00 20 00 00 00 r1 s>>= 32
     153:       05 00 01 00 00 00 00 00 goto +1 <LBB0_72>

00000000000004d0 <LBB0_71>:
     154:       77 01 00 00 20 00 00 00 r1 >>= 323

Fixes: ee26dad ("libbpf: Add support for relocatable bitfields")
Signed-off-by: Andrii Nakryiko <[email protected]>
Signed-off-by: Alexei Starovoitov <[email protected]>
Acked-by: Lorenz Bauer <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 22, 2021
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 Freescale#26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 Freescale#27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 Freescale#28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 Freescale#40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 Freescale#44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 Freescale#45 0x00007f8990968b85 in __getgrnam_r [...]
 Freescale#46 0x00007f89909d6b77 in grantpt [...]
 Freescale#47 0x00007f8990a9394e in __GI_openpty [...]
 Freescale#48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 Freescale#49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 Freescale#50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 Freescale#51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 Freescale#52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 22, 2021
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 Freescale#26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 Freescale#27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 Freescale#28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 Freescale#40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 Freescale#44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 Freescale#45 0x00007f8990968b85 in __getgrnam_r [...]
 Freescale#46 0x00007f89909d6b77 in grantpt [...]
 Freescale#47 0x00007f8990a9394e in __GI_openpty [...]
 Freescale#48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 Freescale#49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 Freescale#50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 Freescale#51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 Freescale#52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request May 22, 2021
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 Freescale#26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 Freescale#27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 Freescale#28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 Freescale#40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 Freescale#44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 Freescale#45 0x00007f8990968b85 in __getgrnam_r [...]
 Freescale#46 0x00007f89909d6b77 in grantpt [...]
 Freescale#47 0x00007f8990a9394e in __GI_openpty [...]
 Freescale#48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 Freescale#49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 Freescale#50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 Freescale#51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 Freescale#52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request Jun 23, 2021
[ Upstream commit ad9f151 ]

nft_set_elem_expr_alloc() needs an initialized set if expression sets on
the NFT_EXPR_GC flag. Move set fields initialization before expression
setup.

[4512935.019450] ==================================================================
[4512935.019456] BUG: KASAN: null-ptr-deref in nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019487] Read of size 8 at addr 0000000000000070 by task nft/23532
[4512935.019494] CPU: 1 PID: 23532 Comm: nft Not tainted 5.12.0-rc4+ Freescale#48
[...]
[4512935.019502] Call Trace:
[4512935.019505]  dump_stack+0x89/0xb4
[4512935.019512]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019536]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019560]  kasan_report.cold.12+0x5f/0xd8
[4512935.019566]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019590]  nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019615]  nf_tables_newset+0xc7f/0x1460 [nf_tables]

Reported-by: [email protected]
Fixes: 6503842 ("netfilter: nf_tables: allow to specify stateful expression in set definition")
Signed-off-by: Pablo Neira Ayuso <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
zandrey pushed a commit to zandrey/linux-fslc that referenced this pull request Sep 12, 2021
commit ad9f151 upstream.

nft_set_elem_expr_alloc() needs an initialized set if expression sets on
the NFT_EXPR_GC flag. Move set fields initialization before expression
setup.

[4512935.019450] ==================================================================
[4512935.019456] BUG: KASAN: null-ptr-deref in nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019487] Read of size 8 at addr 0000000000000070 by task nft/23532
[4512935.019494] CPU: 1 PID: 23532 Comm: nft Not tainted 5.12.0-rc4+ Freescale#48
[...]
[4512935.019502] Call Trace:
[4512935.019505]  dump_stack+0x89/0xb4
[4512935.019512]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019536]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019560]  kasan_report.cold.12+0x5f/0xd8
[4512935.019566]  ? nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019590]  nft_set_elem_expr_alloc+0x84/0xd0 [nf_tables]
[4512935.019615]  nf_tables_newset+0xc7f/0x1460 [nf_tables]

Reported-by: [email protected]
Fixes: 6503842 ("netfilter: nf_tables: allow to specify stateful expression in set definition")
Signed-off-by: Pablo Neira Ayuso <[email protected]>
Signed-off-by: Florian Westphal <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
LeBlue pushed a commit to LeBlue/linux-fslc that referenced this pull request Jan 20, 2022
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 Freescale#26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 Freescale#27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 Freescale#28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 Freescale#40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 Freescale#44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 Freescale#45 0x00007f8990968b85 in __getgrnam_r [...]
 Freescale#46 0x00007f89909d6b77 in grantpt [...]
 Freescale#47 0x00007f8990a9394e in __GI_openpty [...]
 Freescale#48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 Freescale#49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 Freescale#50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 Freescale#51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 Freescale#52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
angolini pushed a commit to angolini/linux-fslc that referenced this pull request Jan 9, 2024
[ Upstream commit fe57575 ]

The `cgrp_local_storage` test triggers a kernel panic like:

  # ./test_progs -t cgrp_local_storage
  Can't find bpf_testmod.ko kernel module: -2
  WARNING! Selftests relying on bpf_testmod.ko will be skipped.
  [  550.930632] CPU 1 Unable to handle kernel paging request at virtual address 0000000000000080, era == ffff80000200be34, ra == ffff80000200be00
  [  550.931781] Oops[Freescale#1]:
  [  550.931966] CPU: 1 PID: 1303 Comm: test_progs Not tainted 6.7.0-rc2-loong-devel-g2f56bb0d2327 Freescale#35 a896aca3f4164f09cc346f89f2e09832e07be5f6
  [  550.932215] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
  [  550.932403] pc ffff80000200be34 ra ffff80000200be00 tp 9000000108350000 sp 9000000108353dc0
  [  550.932545] a0 0000000000000000 a1 0000000000000517 a2 0000000000000118 a3 00007ffffbb15558
  [  550.932682] a4 00007ffffbb15620 a5 90000001004e7700 a6 0000000000000021 a7 0000000000000118
  [  550.932824] t0 ffff80000200bdc0 t1 0000000000000517 t2 0000000000000517 t3 00007ffff1c06ee0
  [  550.932961] t4 0000555578ae04d0 t5 fffffffffffffff8 t6 0000000000000004 t7 0000000000000020
  [  550.933097] t8 0000000000000040 u0 00000000000007b8 s9 9000000108353e00 s0 90000001004e7700
  [  550.933241] s1 9000000004005000 s2 0000000000000001 s3 0000000000000000 s4 0000555555eb2ec8
  [  550.933379] s5 00007ffffbb15bb8 s6 00007ffff1dafd60 s7 000055555663f610 s8 00007ffff1db0050
  [  550.933520]    ra: ffff80000200be00 bpf_prog_98f1b9e767be2a84_on_enter+0x40/0x200
  [  550.933911]   ERA: ffff80000200be34 bpf_prog_98f1b9e767be2a84_on_enter+0x74/0x200
  [  550.934105]  CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
  [  550.934596]  PRMD: 00000004 (PPLV0 +PIE -PWE)
  [  550.934712]  EUEN: 00000003 (+FPE +SXE -ASXE -BTE)
  [  550.934836]  ECFG: 00071c1c (LIE=2-4,10-12 VS=7)
  [  550.934976] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
  [  550.935097]  BADV: 0000000000000080
  [  550.935181]  PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
  [  550.935291] Modules linked in:
  [  550.935391] Process test_progs (pid: 1303, threadinfo=000000006c3b1c41, task=0000000061f84a55)
  [  550.935643] Stack : 00007ffffbb15bb8 0000555555eb2ec8 0000000000000000 0000000000000001
  [  550.935844]         9000000004005000 ffff80001b864000 00007ffffbb15450 90000000029aa034
  [  550.935990]         0000000000000000 9000000108353ec0 0000000000000118 d07d9dfb09721a09
  [  550.936175]         0000000000000001 0000000000000000 9000000108353ec0 0000000000000118
  [  550.936314]         9000000101d46ad0 900000000290abf0 000055555663f610 0000000000000000
  [  550.936479]         0000000000000003 9000000108353ec0 00007ffffbb15450 90000000029d7288
  [  550.936635]         00007ffff1dafd60 000055555663f610 0000000000000000 0000000000000003
  [  550.936779]         9000000108353ec0 90000000035dd1f0 00007ffff1dafd58 9000000002841c5c
  [  550.936939]         0000000000000119 0000555555eea5a8 00007ffff1d78780 00007ffffbb153e0
  [  550.937083]         ffffffffffffffda 00007ffffbb15518 0000000000000040 00007ffffbb15558
  [  550.937224]         ...
  [  550.937299] Call Trace:
  [  550.937521] [<ffff80000200be34>] bpf_prog_98f1b9e767be2a84_on_enter+0x74/0x200
  [  550.937910] [<90000000029aa034>] bpf_trace_run2+0x90/0x154
  [  550.938105] [<900000000290abf0>] syscall_trace_enter.isra.0+0x1cc/0x200
  [  550.938224] [<90000000035dd1f0>] do_syscall+0x48/0x94
  [  550.938319] [<9000000002841c5c>] handle_syscall+0xbc/0x158
  [  550.938477]
  [  550.938607] Code: 580009ae  50016000  262402e4 <28c20085> 14092084  03a00084  16000024  03240084  00150006
  [  550.938851]
  [  550.939021] ---[ end trace 0000000000000000 ]---

Further investigation shows that this panic is triggered by memory
load operations:

  ptr = bpf_cgrp_storage_get(&map_a, task->cgroups->dfl_cgrp, 0,
                             BPF_LOCAL_STORAGE_GET_F_CREATE);

The expression `task->cgroups->dfl_cgrp` involves two memory load.
Since the field offset fits in imm12 or imm14, we use ldd or ldptrd
instructions. But both instructions have the side effect that it will
signed-extended the imm operand. Finally, we got the wrong addresses
and panics is inevitable.

Use a generic ldxd instruction to avoid this kind of issues.

With this change, we have:

  # ./test_progs -t cgrp_local_storage
  Can't find bpf_testmod.ko kernel module: -2
  WARNING! Selftests relying on bpf_testmod.ko will be skipped.
  test_cgrp_local_storage:PASS:join_cgroup /cgrp_local_storage 0 nsec
  Freescale#48/1    cgrp_local_storage/tp_btf:OK
  test_attach_cgroup:PASS:skel_open 0 nsec
  test_attach_cgroup:PASS:prog_attach 0 nsec
  test_attach_cgroup:PASS:prog_attach 0 nsec
  libbpf: prog 'update_cookie_tracing': failed to attach: ERROR: strerror_r(-524)=22
  test_attach_cgroup:FAIL:prog_attach unexpected error: -524
  Freescale#48/2    cgrp_local_storage/attach_cgroup:FAIL
  test_recursion:PASS:skel_open_and_load 0 nsec
  libbpf: prog 'on_lookup': failed to attach: ERROR: strerror_r(-524)=22
  libbpf: prog 'on_lookup': failed to auto-attach: -524
  test_recursion:FAIL:skel_attach unexpected error: -524 (errno 524)
  Freescale#48/3    cgrp_local_storage/recursion:FAIL
  Freescale#48/4    cgrp_local_storage/negative:OK
  Freescale#48/5    cgrp_local_storage/cgroup_iter_sleepable:OK
  test_yes_rcu_lock:PASS:skel_open 0 nsec
  test_yes_rcu_lock:PASS:skel_load 0 nsec
  libbpf: prog 'yes_rcu_lock': failed to attach: ERROR: strerror_r(-524)=22
  libbpf: prog 'yes_rcu_lock': failed to auto-attach: -524
  test_yes_rcu_lock:FAIL:skel_attach unexpected error: -524 (errno 524)
  Freescale#48/6    cgrp_local_storage/yes_rcu_lock:FAIL
  Freescale#48/7    cgrp_local_storage/no_rcu_lock:OK
  Freescale#48      cgrp_local_storage:FAIL

  All error logs:
  test_cgrp_local_storage:PASS:join_cgroup /cgrp_local_storage 0 nsec
  test_attach_cgroup:PASS:skel_open 0 nsec
  test_attach_cgroup:PASS:prog_attach 0 nsec
  test_attach_cgroup:PASS:prog_attach 0 nsec
  libbpf: prog 'update_cookie_tracing': failed to attach: ERROR: strerror_r(-524)=22
  test_attach_cgroup:FAIL:prog_attach unexpected error: -524
  Freescale#48/2    cgrp_local_storage/attach_cgroup:FAIL
  test_recursion:PASS:skel_open_and_load 0 nsec
  libbpf: prog 'on_lookup': failed to attach: ERROR: strerror_r(-524)=22
  libbpf: prog 'on_lookup': failed to auto-attach: -524
  test_recursion:FAIL:skel_attach unexpected error: -524 (errno 524)
  Freescale#48/3    cgrp_local_storage/recursion:FAIL
  test_yes_rcu_lock:PASS:skel_open 0 nsec
  test_yes_rcu_lock:PASS:skel_load 0 nsec
  libbpf: prog 'yes_rcu_lock': failed to attach: ERROR: strerror_r(-524)=22
  libbpf: prog 'yes_rcu_lock': failed to auto-attach: -524
  test_yes_rcu_lock:FAIL:skel_attach unexpected error: -524 (errno 524)
  Freescale#48/6    cgrp_local_storage/yes_rcu_lock:FAIL
  Freescale#48      cgrp_local_storage:FAIL
  Summary: 0/4 PASSED, 0 SKIPPED, 1 FAILED

No panics any more (The test still failed because lack of BPF trampoline
which I am actively working on).

Fixes: 5dc6155 ("LoongArch: Add BPF JIT support")
Signed-off-by: Hengqi Chen <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
otavio pushed a commit that referenced this pull request Nov 11, 2024
commit d0e806b upstream.

During the migration of Soundwire runtime stream allocation from
the Qualcomm Soundwire controller to SoC's soundcard drivers the sdm845
soundcard was forgotten.

At this point any playback attempt or audio daemon startup, for instance
on sdm845-db845c (Qualcomm RB3 board), will result in stream pointer
NULL dereference:

 Unable to handle kernel NULL pointer dereference at virtual
 address 0000000000000020
 Mem abort info:
   ESR = 0x0000000096000004
   EC = 0x25: DABT (current EL), IL = 32 bits
   SET = 0, FnV = 0
   EA = 0, S1PTW = 0
   FSC = 0x04: level 0 translation fault
 Data abort info:
   ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
   CM = 0, WnR = 0, TnD = 0, TagAccess = 0
   GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101ecf000
 [0000000000000020] pgd=0000000000000000, p4d=0000000000000000
 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
 Modules linked in: ...
 CPU: 5 UID: 0 PID: 1198 Comm: aplay
 Not tainted 6.12.0-rc2-qcomlt-arm64-00059-g9d78f315a362-dirty #18
 Hardware name: Thundercomm Dragonboard 845c (DT)
 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
 lr : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
 sp : ffff80008a2035c0
 x29: ffff80008a2035c0 x28: ffff80008a203978 x27: 0000000000000000
 x26: 00000000000000c0 x25: 0000000000000000 x24: ffff1676025f4800
 x23: ffff167600ff1cb8 x22: ffff167600ff1c98 x21: 0000000000000003
 x20: ffff167607316000 x19: ffff167604e64e80 x18: 0000000000000000
 x17: 0000000000000000 x16: ffffcec265074160 x15: 0000000000000000
 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
 x8 : 0000000000000000 x7 : 0000000000000000 x6 : ffff167600ff1cec
 x5 : ffffcec22cfa2010 x4 : 0000000000000000 x3 : 0000000000000003
 x2 : ffff167613f836c0 x1 : 0000000000000000 x0 : ffff16761feb60b8
 Call trace:
  sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
  wsa881x_hw_params+0x68/0x80 [snd_soc_wsa881x]
  snd_soc_dai_hw_params+0x3c/0xa4
  __soc_pcm_hw_params+0x230/0x660
  dpcm_be_dai_hw_params+0x1d0/0x3f8
  dpcm_fe_dai_hw_params+0x98/0x268
  snd_pcm_hw_params+0x124/0x460
  snd_pcm_common_ioctl+0x998/0x16e8
  snd_pcm_ioctl+0x34/0x58
  __arm64_sys_ioctl+0xac/0xf8
  invoke_syscall+0x48/0x104
  el0_svc_common.constprop.0+0x40/0xe0
  do_el0_svc+0x1c/0x28
  el0_svc+0x34/0xe0
  el0t_64_sync_handler+0x120/0x12c
  el0t_64_sync+0x190/0x194
 Code: aa0403fb f9418400 9100e000 9400102f (f8420f22)
 ---[ end trace 0000000000000000 ]---

0000000000006108 <sdw_stream_add_slave>:
    6108:       d503233f        paciasp
    610c:       a9b97bfd        stp     x29, x30, [sp, #-112]!
    6110:       910003fd        mov     x29, sp
    6114:       a90153f3        stp     x19, x20, [sp, #16]
    6118:       a9025bf5        stp     x21, x22, [sp, #32]
    611c:       aa0103f6        mov     x22, x1
    6120:       2a0303f5        mov     w21, w3
    6124:       a90363f7        stp     x23, x24, [sp, #48]
    6128:       aa0003f8        mov     x24, x0
    612c:       aa0203f7        mov     x23, x2
    6130:       a9046bf9        stp     x25, x26, [sp, #64]
    6134:       aa0403f9        mov     x25, x4        <-- x4 copied to x25
    6138:       a90573fb        stp     x27, x28, [sp, #80]
    613c:       aa0403fb        mov     x27, x4
    6140:       f9418400        ldr     x0, [x0, torvalds#776]
    6144:       9100e000        add     x0, x0, #0x38
    6148:       94000000        bl      0 <mutex_lock>
    614c:       f8420f22        ldr     x2, [x25, #32]!  <-- offset 0x44
    ^^^
This is 0x6108 + offset 0x44 from the beginning of sdw_stream_add_slave()
where data abort happens.
wsa881x_hw_params() is called with stream = NULL and passes it further
in register x4 (5th argument) to sdw_stream_add_slave() without any checks.
Value from x4 is copied to x25 and finally it aborts on trying to load
a value from address in x25 plus offset 32 (in dec) which corresponds
to master_list member in struct sdw_stream_runtime:

struct sdw_stream_runtime {
        const char  *              name;	/*     0     8 */
        struct sdw_stream_params   params;	/*     8    12 */
        enum sdw_stream_state      state;	/*    20     4 */
        enum sdw_stream_type       type;	/*    24     4 */
        /* XXX 4 bytes hole, try to pack */
 here-> struct list_head           master_list;	/*    32    16 */
        int                        m_rt_count;	/*    48     4 */
        /* size: 56, cachelines: 1, members: 6 */
        /* sum members: 48, holes: 1, sum holes: 4 */
        /* padding: 4 */
        /* last cacheline: 56 bytes */

Fix this by adding required calls to qcom_snd_sdw_startup() and
sdw_release_stream() to startup and shutdown routines which restores
the previous correct behaviour when ->set_stream() method is called to
set a valid stream runtime pointer on playback startup.

Reproduced and then fix was tested on db845c RB3 board.

Reported-by: Dmitry Baryshkov <[email protected]>
Cc: [email protected]
Fixes: 15c7fab ("ASoC: qcom: Move Soundwire runtime stream alloc to soundcards")
Cc: Srinivas Kandagatla <[email protected]>
Cc: Dmitry Baryshkov <[email protected]>
Cc: Krzysztof Kozlowski <[email protected]>
Cc: Pierre-Louis Bossart <[email protected]>
Signed-off-by: Alexey Klimov <[email protected]>
Tested-by: Steev Klimaszewski <[email protected]> # Lenovo Yoga C630
Reviewed-by: Krzysztof Kozlowski <[email protected]>
Reviewed-by: Srinivas Kandagatla <[email protected]>
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Mark Brown <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
otavio pushed a commit that referenced this pull request Dec 23, 2024
commit 86e6ca5 upstream.

blkcg_unpin_online() walks up the blkcg hierarchy putting the online pin. To
walk up, it uses blkcg_parent(blkcg) but it was calling that after
blkcg_destroy_blkgs(blkcg) which could free the blkcg, leading to the
following UAF:

  ==================================================================
  BUG: KASAN: slab-use-after-free in blkcg_unpin_online+0x15a/0x270
  Read of size 8 at addr ffff8881057678c0 by task kworker/9:1/117

  CPU: 9 UID: 0 PID: 117 Comm: kworker/9:1 Not tainted 6.13.0-rc1-work-00182-gb8f52214c61a-dirty #48
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 02/02/2022
  Workqueue: cgwb_release cgwb_release_workfn
  Call Trace:
   <TASK>
   dump_stack_lvl+0x27/0x80
   print_report+0x151/0x710
   kasan_report+0xc0/0x100
   blkcg_unpin_online+0x15a/0x270
   cgwb_release_workfn+0x194/0x480
   process_scheduled_works+0x71b/0xe20
   worker_thread+0x82a/0xbd0
   kthread+0x242/0x2c0
   ret_from_fork+0x33/0x70
   ret_from_fork_asm+0x1a/0x30
   </TASK>
  ...
  Freed by task 1944:
   kasan_save_track+0x2b/0x70
   kasan_save_free_info+0x3c/0x50
   __kasan_slab_free+0x33/0x50
   kfree+0x10c/0x330
   css_free_rwork_fn+0xe6/0xb30
   process_scheduled_works+0x71b/0xe20
   worker_thread+0x82a/0xbd0
   kthread+0x242/0x2c0
   ret_from_fork+0x33/0x70
   ret_from_fork_asm+0x1a/0x30

Note that the UAF is not easy to trigger as the free path is indirected
behind a couple RCU grace periods and a work item execution. I could only
trigger it with artifical msleep() injected in blkcg_unpin_online().

Fix it by reading the parent pointer before destroying the blkcg's blkg's.

Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Abagail ren <[email protected]>
Suggested-by: Linus Torvalds <[email protected]>
Fixes: 4308a43 ("blkcg: don't offline parent blkcg first")
Cc: [email protected] # v5.7+
Signed-off-by: Jens Axboe <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.