Skip to content

GM-git-dotcom/la_ood_cs640

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Issues Stars LinkedIn


graphical abstract

Layer Adaptive Out-of-Distribution detection for CS640

Preliminary results of LA-OOD on in-distribution CIFAR10 and OOD Tiny ImageNet on VGG16 backbone.

Main concept

Team members

GM Harshvardhan

Harshil Gandhi

Kathakoli Sengupta

Overview

In this project, we will be using Wang et. al (2022)'s LA-OOD https://github.com/haoliangwang86/LA-OOD (paper: https://arxiv.org/pdf/2203.00192.pdf) for out-of-distribution detection on satellite images on So2Sat (https://github.com/zhu-xlab/So2Sat-LCZ42).

Implementation

The implementation pipeline is as follows:

1. Train the backbone models

python train_backbone_model.py --model vgg16 --dataset so2sat

2. Download the OOD datasets

Download the following dataset:

save the unzipped files in ./data folder

3. Generate the dataset

Generate the InD and OOD datasets:

python generate_datasets.py

4. Save the intermedia outputs

python save_inter_outputs.py --model vgg16 --ind so2sat

5. Train OOD detectors

python train_ood_detectors.py --model vgg16 --ind so2sat

The above step trains all the One-Class SVMs (OCSVMs) to detect whether an image is out-of-distribution or not.

6. Test: OOD detection

python detect_oods.py --model vgg16 --ind so2sat

About

LA-OOD implementation for CS640 project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published