Preliminary results of LA-OOD on in-distribution CIFAR10 and OOD Tiny ImageNet on VGG16 backbone.
- Email: [email protected]
- Email: [email protected]
- Email: [email protected]
In this project, we will be using Wang et. al (2022)'s LA-OOD https://github.com/haoliangwang86/LA-OOD (paper: https://arxiv.org/pdf/2203.00192.pdf) for out-of-distribution detection on satellite images on So2Sat (https://github.com/zhu-xlab/So2Sat-LCZ42).
The implementation pipeline is as follows:
python train_backbone_model.py --model vgg16 --dataset so2sat
Download the following dataset:
- (for preliminary) Tiny ImageNet: https://image-net.org/index.php
- (for final results) Satellite imagery dataset: https://www.kaggle.com/datasets/mahmoudreda55/satellite-image-classification
save the unzipped files in ./data folder
Generate the InD and OOD datasets:
python generate_datasets.py
python save_inter_outputs.py --model vgg16 --ind so2sat
python train_ood_detectors.py --model vgg16 --ind so2sat
The above step trains all the One-Class SVMs (OCSVMs) to detect whether an image is out-of-distribution or not.
python detect_oods.py --model vgg16 --ind so2sat