Skip to content

GlobalFishingWatch/gfwr

Repository files navigation

gfwr: Access data from Global Fishing Watch APIs

DOI Project Status: Active - The project has reached a stable, usable state and is being actively developed. Licence :registry status badge

Important
This version of gfwr gives access to Global Fishing Watch API version 3. Starting April 30th, 2024, this is the official API version. For latest API releases, please check our API release notes

The gfwr R package is a simple wrapper for the Global Fishing Watch (GFW) APIs. It provides convenient functions to freely pull GFW data directly into R in tidy formats.

The package currently works with the following APIs:

  • Vessels API: vessel search and identity based on AIS self reported data and public registry information
  • Events API: encounters, loitering, port visits, AIS-disabling events and fishing events based on AIS data
  • Gridded fishing effort (4Wings API): apparent fishing effort based on AIS data

Note: See the Terms of Use page for GFW APIs for information on our API licenses and rate limits.

Installation

You can install the most recent version of gfwr using:

# Check/install remotes
if (!require("remotes"))
  install.packages("remotes")

remotes::install_github("GlobalFishingWatch/gfwr")

gfwr is also in the rOpenSci R-universe, and can be installed like this:

install.packages("gfwr", 
                 repos = c("https://globalfishingwatch.r-universe.dev",
                           "https://cran.r-project.org"))

Once everything is installed, you can load and use gfwr in your scripts with library(gfwr)

library(gfwr)

Authorization

The use of gfwr requires a GFW API token, which users can request from the GFW API Portal. Save this token to your .Renviron file using usethis::edit_r_environ() and adding a variable named GFW_TOKEN to the file (GFW_TOKEN="PASTE_YOUR_TOKEN_HERE"). Save the .Renviron file and restart the R session to make the edit effective.

Then use the gfw_auth() helper function to inform the key on your function calls. You can use gfw_auth() directly or save the information to an object in your R workspace every time and pass it to subsequent gfwr functions.

So you can do:

key <- gfw_auth()

or this

key <- Sys.getenv("GFW_TOKEN")

Note: gfwr functions are set to use key = gfw_auth() by default.

Vessels API

The get_vessel_info() function allows you to get vessel identity details from the GFW Vessels API.

There are two search types: search, and id.

  • search is performed by using parameters query for basic searches and where for advanced searchers using SQL expressions
    • query takes a single identifier that can be the MMSI, IMO, callsign, or shipname as input and identifies all vessels that match.
    • where search allows for the use of complex search with logical clauses (AND, OR) and fuzzy matching with terms such as LIKE, using SQL syntax (see examples in the function)
    • includes adds information from public registries. Options are “MATCH_CRITERIA”, “OWNERSHIP” and “AUTHORIZATIONS”

Examples

To get information of a vessel using its MMSI, IMO number, callsign or name, the search can be done directly using the number or the string. For example, to look for a vessel with MMSI = 224224000:

get_vessel_info(query = 224224000,
                search_type = "search",
                key = key)
#> 1 total vessels
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                           
#>   <chr>                             
#> 1 public-global-vessel-identity:v3.0
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        1
#> 
#> $registryInfo
#> # A tibble: 1 × 16
#>   index recordId        sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <dbl> <chr>           <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1     1 e0c9823749264a… <chr [6]>  2242… ESP   AGURTZA… AGURTZAB… EBSJ     8733…
#> # ℹ 7 more variables: transmissionDateFrom <chr>, transmissionDateTo <chr>,
#> #   geartypes <chr>, lengthM <dbl>, tonnageGt <int>, vesselInfoReference <chr>,
#> #   extraFields <list>
#> 
#> $registryOwners
#> # A tibble: 0 × 2
#> # ℹ 2 variables: index <dbl>, <list> <list>
#> 
#> $registryPublicAuthorizations
#> # A tibble: 3 × 5
#>   index dateFrom             dateTo               ssvid     sourceCode
#>   <dbl> <chr>                <chr>                <chr>     <list>    
#> 1     1 2019-01-01T00:00:00Z 2019-10-01T00:00:00Z 224224000 <chr [1]> 
#> 2     1 2012-01-01T00:00:00Z 2019-01-01T00:00:00Z 224224000 <chr [1]> 
#> 3     1 2019-10-15T00:00:00Z 2023-02-01T00:00:00Z 306118000 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 2 × 10
#>   index vesselId              geartypes_name geartypes_source geartypes_yearFrom
#>   <dbl> <chr>                 <chr>          <chr>                         <int>
#> 1     1 6632c9eb8-8009-abdb-… PURSE_SEINE_S… GFW_VESSEL_LIST                2019
#> 2     1 3c99c326d-dd2e-175d-… PURSE_SEINE_S… GFW_VESSEL_LIST                2015
#> # ℹ 5 more variables: geartypes_yearTo <int>, shiptypes_name <chr>,
#> #   shiptypes_source <chr>, shiptypes_yearFrom <int>, shiptypes_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 2 × 14
#>   index vesselId   ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <dbl> <chr>      <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1     1 6632c9eb8… 3061… AGURTZA… AGURTZAB… BES   PJBL     8733…          418581
#> 2     1 3c99c326d… 2242… AGURTZA… AGURTZAB… ESP   EBSJ     8733…          135057
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

To do more specific searches (imo = '8300949'), combine different fields (imo = '8300949' AND ssvid = '214182732') and do fuzzy matching ("shipname LIKE '%GABU REEFE%' OR imo = '8300949'"), use parameter where instead of query:

get_vessel_info(where = "shipname LIKE '%GABU REEFE%' OR imo = '8300949'",
                search_type = "search",
                key = key)
#> 1 total vessels
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                           
#>   <chr>                             
#> 1 public-global-vessel-identity:v3.0
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        1
#> 
#> $registryInfo
#> # A tibble: 1 × 17
#>   index recordId        sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <dbl> <chr>           <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1     1 b16ca93ea690fc… <chr [2]>  6290… GMB   GABU RE… GABUREEF… C5J278   8300…
#> # ℹ 8 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <chr>, lengthM <dbl>, tonnageGt <int>,
#> #   vesselInfoReference <chr>, extraFields <list>
#> 
#> $registryOwners
#> # A tibble: 4 × 7
#>   index name                   flag  ssvid     sourceCode dateFrom        dateTo
#>   <dbl> <chr>                  <chr> <chr>     <list>     <chr>           <chr> 
#> 1     1 FISHING CARGO SERVICES PAN   629009266 <chr [1]>  2024-08-07T10:… 2024-…
#> 2     1 FISHING CARGO SERVICES PAN   613590000 <chr [1]>  2022-01-24T09:… 2024-…
#> 3     1 FISHING CARGO SERVICES PAN   214182732 <chr [1]>  2019-02-23T11:… 2022-…
#> 4     1 FISHING CARGO SERVICES PAN   616852000 <chr [1]>  2012-01-08T19:… 2019-…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 0 × 2
#> # ℹ 2 variables: index <dbl>, <list> <list>
#> 
#> $combinedSourcesInfo
#> # A tibble: 4 × 10
#>   index vesselId              geartypes_name geartypes_source geartypes_yearFrom
#>   <dbl> <chr>                 <chr>          <chr>                         <int>
#> 1     1 58cf536b1-1fca-dac3-… CARRIER        GFW_VESSEL_LIST                2012
#> 2     1 1da8dbc23-3c48-d5ce-… CARRIER        GFW_VESSEL_LIST                2022
#> 3     1 0b7047cb5-58c8-6e63-… CARRIER        GFW_VESSEL_LIST                2019
#> 4     1 9827ea1ea-a120-f374-… CARRIER        GFW_VESSEL_LIST                2024
#> # ℹ 5 more variables: geartypes_yearTo <int>, shiptypes_name <chr>,
#> #   shiptypes_source <chr>, shiptypes_yearFrom <int>, shiptypes_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 4 × 14
#>   index vesselId   ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <dbl> <chr>      <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1     1 9827ea1ea… 6290… GABU RE… GABUREEF… GMB   C5J278   8300…          118837
#> 2     1 1da8dbc23… 6135… GABU RE… GABUREEF… CMR   TJMC996  8300…          973251
#> 3     1 0b7047cb5… 2141… GABU RE… GABUREEF… MDA   ER2732   8300…          642750
#> 4     1 58cf536b1… 6168… GABU RE… GABUREEF… COM   D6FJ2    8300…          469834
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
  • The id search allows the user to specify a vector of vesselIds

Note: vesselId is an internal ID generated by GFW to connect data accross APIs and involves a combination of vessel and tracking data information. It can be retrieved using get_vessel_info() and fetching the vector of responses inside $selfReportedInfo$vesselId. See the identity vignette for more information.

To search by vesselId, use parameter ids and specify search_type = "id":

get_vessel_info(ids = "8c7304226-6c71-edbe-0b63-c246734b3c01",
                search_type = "id",
                key = key)
#> 1 total vessels
#> $dataset
#> # A tibble: 1 × 1
#>   dataset                           
#>   <chr>                             
#> 1 public-global-vessel-identity:v3.0
#> 
#> $registryInfoTotalRecords
#> # A tibble: 1 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        5
#> 
#> $registryInfo
#> # A tibble: 5 × 17
#>   index recordId        sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <dbl> <chr>           <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1     1 a8d00ce54b37ad… <chr [3]>  2733… RUS   FRIO FO… FRIOFORW… UCRZ     9076…
#> 2     1 a8d00ce54b37ad… <chr [2]>  5111… PLW   FRIO FO… FRIOFORW… T8A4891  9076…
#> 3     1 a8d00ce54b37ad… <chr [6]>  2106… CYP   FRIO FO… FRIOFORW… 5BWC3    9076…
#> 4     1 a8d00ce54b37ad… <chr [2]>  3413… KNA   FRIO FO… FRIOFORW… V4JQ3    9076…
#> 5     1 a8d00ce54b37ad… <chr [2]>  3546… PAN   FRIO AE… FRIOAEGE… 3FGY4    9076…
#> # ℹ 8 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <chr>, lengthM <int>, tonnageGt <int>,
#> #   vesselInfoReference <chr>, extraFields <list>
#> 
#> $registryOwners
#> # A tibble: 3 × 7
#>   index name    flag  ssvid     sourceCode dateFrom             dateTo          
#>   <dbl> <chr>   <chr> <chr>     <list>     <chr>                <chr>           
#> 1     1 COLINER RUS   273379740 <chr [1]>  2015-02-27T10:59:43Z 2024-09-30T20:2…
#> 2     1 COLINER CYP   511101495 <chr [1]>  2024-07-04T14:27:04Z 2024-07-24T14:2…
#> 3     1 COLINER CYP   210631000 <chr [1]>  2013-05-15T20:19:43Z 2024-07-04T14:1…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 3 × 5
#>   index dateFrom             dateTo               ssvid     sourceCode
#>   <dbl> <chr>                <chr>                <chr>     <list>    
#> 1     1 2023-01-01T00:00:00Z 2024-09-01T00:00:00Z 210631000 <chr [1]> 
#> 2     1 2020-01-01T00:00:00Z 2024-09-01T00:00:00Z 210631000 <chr [1]> 
#> 3     1 2024-08-09T00:00:00Z 2024-09-01T00:00:00Z 273379740 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 5 × 10
#>   index vesselId              geartypes_name geartypes_source geartypes_yearFrom
#>   <dbl> <chr>                 <chr>          <chr>                         <int>
#> 1     1 0cb77880e-ee49-2ce4-… CARRIER        GFW_VESSEL_LIST                2012
#> 2     1 3c81a942b-bf0a-f476-… CARRIER        GFW_VESSEL_LIST                2015
#> 3     1 0edad163f-f53d-9ddb-… CARRIER        GFW_VESSEL_LIST                2024
#> 4     1 8c7304226-6c71-edbe-… CARRIER        GFW_VESSEL_LIST                2013
#> 5     1 da1cd7e1b-b8d0-539c-… CARRIER        GFW_VESSEL_LIST                2015
#> # ℹ 5 more variables: geartypes_yearTo <int>, shiptypes_name <chr>,
#> #   shiptypes_source <chr>, shiptypes_yearFrom <int>, shiptypes_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 1 × 14
#>   index vesselId   ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <dbl> <chr>      <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1     1 8c7304226… 2106… FRIO FO… FRIOFORW… CYP   5BWC3    9076…         3369802
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

To specify more than one vesselId, you can submit a vector:

get_vessel_info(ids = c("8c7304226-6c71-edbe-0b63-c246734b3c01",
                        "6583c51e3-3626-5638-866a-f47c3bc7ef7c",
                        "71e7da672-2451-17da-b239-857831602eca"),
                search_type = 'id',
                key = key)
#> 3 total vessels
#> $dataset
#> # A tibble: 3 × 1
#>   dataset                           
#>   <chr>                             
#> 1 public-global-vessel-identity:v3.0
#> 2 public-global-vessel-identity:v3.0
#> 3 public-global-vessel-identity:v3.0
#> 
#> $registryInfoTotalRecords
#> # A tibble: 3 × 1
#>   registryInfoTotalRecords
#>                      <int>
#> 1                        5
#> 2                        2
#> 3                        1
#> 
#> $registryInfo
#> # A tibble: 8 × 17
#>   index recordId        sourceCode ssvid flag  shipname nShipname callsign imo  
#>   <dbl> <chr>           <list>     <chr> <chr> <chr>    <chr>     <chr>    <chr>
#> 1     1 a8d00ce54b37ad… <chr [3]>  2733… RUS   FRIO FO… FRIOFORW… UCRZ     9076…
#> 2     1 a8d00ce54b37ad… <chr [2]>  5111… PLW   FRIO FO… FRIOFORW… T8A4891  9076…
#> 3     1 a8d00ce54b37ad… <chr [6]>  2106… CYP   FRIO FO… FRIOFORW… 5BWC3    9076…
#> 4     1 a8d00ce54b37ad… <chr [2]>  3413… KNA   FRIO FO… FRIOFORW… V4JQ3    9076…
#> 5     1 a8d00ce54b37ad… <chr [2]>  3546… PAN   FRIO AE… FRIOAEGE… 3FGY4    9076…
#> 6     2 b82d02e5c2c11e… <chr [5]>  4417… KOR   ADRIA    ADRIA     DTBY3    8919…
#> 7     2 b82d02e5c2c11e… <chr [4]>  4417… KOR   PREMIER  PREMIER   DTBY3    8919…
#> 8     3 685862e0626f62… <chr [5]>  5480… PHL   JOHNREY… JOHNREYN… DUQA7    8118…
#> # ℹ 8 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> #   transmissionDateTo <chr>, geartypes <chr>, lengthM <dbl>, tonnageGt <dbl>,
#> #   vesselInfoReference <chr>, extraFields <list>
#> 
#> $registryOwners
#> # A tibble: 5 × 7
#>   index name                          flag  ssvid     sourceCode dateFrom dateTo
#>   <dbl> <chr>                         <chr> <chr>     <list>     <chr>    <chr> 
#> 1     1 COLINER                       RUS   273379740 <chr [1]>  2015-02… 2024-…
#> 2     1 COLINER                       CYP   511101495 <chr [1]>  2024-07… 2024-…
#> 3     1 COLINER                       CYP   210631000 <chr [1]>  2013-05… 2024-…
#> 4     2 DONGWON INDUSTRIES            KOR   441734000 <chr [2]>  2013-09… 2024-…
#> 5     3 TRANS PACIFIC JOURNEY FISHING PHL   548012100 <chr [3]>  2017-02… 2019-…
#> 
#> $registryPublicAuthorizations
#> # A tibble: 8 × 5
#>   index dateFrom             dateTo               ssvid     sourceCode
#>   <dbl> <chr>                <chr>                <chr>     <list>    
#> 1     1 2023-01-01T00:00:00Z 2024-09-01T00:00:00Z 210631000 <chr [1]> 
#> 2     1 2020-01-01T00:00:00Z 2024-09-01T00:00:00Z 210631000 <chr [1]> 
#> 3     1 2024-08-09T00:00:00Z 2024-09-01T00:00:00Z 273379740 <chr [1]> 
#> 4     2 2015-10-08T00:00:00Z 2020-07-21T00:00:00Z 441734000 <chr [1]> 
#> 5     2 2012-01-01T00:00:00Z 2013-09-19T00:00:00Z 441734000 <chr [1]> 
#> 6     2 2013-09-20T00:00:00Z 2024-09-01T00:00:00Z 441734000 <chr [1]> 
#> 7     3 2012-01-01T00:00:00Z 2017-10-25T00:00:00Z 548012100 <chr [1]> 
#> 8     3 2019-02-10T18:02:49Z 2024-09-01T00:00:00Z 548012100 <chr [1]> 
#> 
#> $combinedSourcesInfo
#> # A tibble: 9 × 10
#>   index vesselId              geartypes_name geartypes_source geartypes_yearFrom
#>   <dbl> <chr>                 <chr>          <chr>                         <int>
#> 1     1 0cb77880e-ee49-2ce4-… CARRIER        GFW_VESSEL_LIST                2012
#> 2     1 3c81a942b-bf0a-f476-… CARRIER        GFW_VESSEL_LIST                2015
#> 3     1 0edad163f-f53d-9ddb-… CARRIER        GFW_VESSEL_LIST                2024
#> 4     1 8c7304226-6c71-edbe-… CARRIER        GFW_VESSEL_LIST                2013
#> 5     1 da1cd7e1b-b8d0-539c-… CARRIER        GFW_VESSEL_LIST                2015
#> 6     2 aca119c29-95dd-f5c4-… TUNA_PURSE_SE… COMBINATION_OF_…               2012
#> 7     2 6583c51e3-3626-5638-… TUNA_PURSE_SE… COMBINATION_OF_…               2013
#> 8     3 71e7da672-2451-17da-… TUNA_PURSE_SE… COMBINATION_OF_…               2017
#> 9     3 55889aefb-bef9-224c-… TUNA_PURSE_SE… COMBINATION_OF_…               2017
#> # ℹ 5 more variables: geartypes_yearTo <int>, shiptypes_name <chr>,
#> #   shiptypes_source <chr>, shiptypes_yearFrom <int>, shiptypes_yearTo <int>
#> 
#> $selfReportedInfo
#> # A tibble: 3 × 14
#>   index vesselId   ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <dbl> <chr>      <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1     1 8c7304226… 2106… FRIO FO… FRIOFORW… CYP   5BWC3    9076…         3369802
#> 2     2 6583c51e3… 4417… ADRIA    ADRIA     KOR   DTBY3    <NA>           360249
#> 3     3 71e7da672… 5480… JOHN RE… JOHNREYN… PHL   DUQA-7   8118…          133081
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

This is useful especially because a vessel can have different vesselIds in time.

Check the function documentation for examples with the other function arguments and our dedicated vignette for more information about vessel identity markers and the outputs retrieved.

Events API

The get_event() function allows you to get data on specific vessel activities from the GFW Events API. Event types include apparent fishing events, potential transshipment events (two-vessel encounters and loitering by refrigerated carrier vessels), port visits, and AIS-disabling events (“gaps”). Find more information about events in our caveat documentation.

Events in a given time range

You can get events in a given date range. By not specifying vessels, the response will return results for all vessels.

get_event(event_type = 'ENCOUNTER',
          start_date = "2020-01-01",
          end_date = "2020-01-02",
          key = key
          )
#> [1] "Downloading 286 events from GFW"
#> # A tibble: 286 × 16
#>    start               end                 eventId        eventType    lat   lon
#>    <dttm>              <dttm>              <chr>          <chr>      <dbl> <dbl>
#>  1 2019-12-31 12:00:00 2020-01-01 23:20:00 9d99a5cad40f4… encounter  44.5  136. 
#>  2 2019-12-31 12:00:00 2020-01-01 23:20:00 9d99a5cad40f4… encounter  44.5  136. 
#>  3 2019-12-28 00:20:00 2020-01-01 23:40:00 2f326a52b9b48… encounter  43.4  135. 
#>  4 2020-01-01 17:40:00 2020-01-01 23:30:00 24df89e2316c7… encounter  38.3  121. 
#>  5 2020-01-01 00:00:00 2020-01-01 15:00:00 93b3cfca5f8bf… encounter  60.2  166. 
#>  6 2020-01-01 06:30:00 2020-01-01 20:00:00 2568331d0c9cc… encounter  30.0  123. 
#>  7 2020-01-01 12:30:00 2020-01-01 21:30:00 95bd2e16bc8d9… encounter  38.5  121. 
#>  8 2020-01-01 03:30:00 2020-01-01 06:50:00 f3f2dda127bbe… encounter  39.1  118. 
#>  9 2020-01-01 16:10:00 2020-01-02 08:20:00 601a7210fbb8a… encounter -17.5  -79.5
#> 10 2020-01-01 03:20:00 2020-01-01 07:10:00 878c6f107b33d… encounter  -7.93  60.0
#> # ℹ 276 more rows
#> # ℹ 10 more variables: regions <list>, boundingBox <list>, distances <list>,
#> #   vesselId <chr>, vessel_name <chr>, vessel_ssvid <chr>, vessel_flag <chr>,
#> #   vessel_type <chr>, vessel_publicAuthorizations <list>, event_info <list>

Note: We do not recommend trying too large downloads, such as all encounters for all vessels over a long period of time. This will possibly return time out (524) errors. Our API team is working on a bulk download solution for the future.

Events in a specific area

You can provide a polygon in sf format or the region code (such as an EEZ code) to filter the raster. Check the function documentation for more information about parameters region and region_source

 # fishing events in user shapefile
test_polygon <- sf::st_bbox(c(xmin = -70, xmax = -40, ymin = -10, ymax = 5),
  crs = 4326) |>
  sf::st_as_sfc() |>
  sf::st_as_sf()
get_event(event_type = 'FISHING',
               start_date = "2020-10-01",
               end_date = "2020-10-31",
               region = test_polygon,
               region_source = 'USER_SHAPEFILE',
               key = gfw_auth())
#> [1] "Downloading 59 events from GFW"
#> # A tibble: 59 × 16
#>    start               end                 eventId       eventType     lat   lon
#>    <dttm>              <dttm>              <chr>         <chr>       <dbl> <dbl>
#>  1 2020-10-20 03:23:35 2020-10-20 16:14:26 97790a3a15dc… fishing    4.89   -51.8
#>  2 2020-10-03 05:50:14 2020-10-05 03:35:27 b68b49e7e365… fishing    4.73   -51.5
#>  3 2020-10-01 12:54:31 2020-10-01 21:26:31 083f87bff859… fishing    4.75   -51.6
#>  4 2020-10-19 11:28:05 2020-10-19 15:56:47 52b41baac7ea… fishing    0.376  -47.8
#>  5 2020-10-11 20:13:50 2020-10-12 02:24:29 2dd889e7f9ec… fishing    0.140  -47.9
#>  6 2020-10-25 13:25:27 2020-10-25 19:48:17 75143d8026e8… fishing    0.193  -47.9
#>  7 2020-10-22 01:59:54 2020-10-22 03:58:15 2ed40086d273… fishing   -0.0635 -47.8
#>  8 2020-10-11 10:42:33 2020-10-11 14:06:06 791924103dda… fishing    0.183  -47.9
#>  9 2020-10-05 08:50:27 2020-10-06 17:35:21 c75671db2488… fishing    4.71   -51.5
#> 10 2020-10-01 23:29:31 2020-10-03 03:11:17 4d538f3b37e2… fishing    4.74   -51.5
#> # ℹ 49 more rows
#> # ℹ 10 more variables: regions <list>, boundingBox <list>, distances <list>,
#> #   vesselId <chr>, vessel_name <chr>, vessel_ssvid <chr>, vessel_flag <chr>,
#> #   vessel_type <chr>, vessel_publicAuthorizations <list>, event_info <list>

Events for specific vessels

To extract events for specific vessels, the Events API needs vesselId as input, so you always need to use get_vessel_info() first to extract vesselId from $selfReportedInfo in the response.

Single vessel events

vessel_info <- get_vessel_info(query = 224224000, key = key)
#> 1 total vessels
vessel_info$selfReportedInfo
#> # A tibble: 2 × 14
#>   index vesselId   ssvid shipname nShipname flag  callsign imo   messagesCounter
#>   <dbl> <chr>      <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#> 1     1 6632c9eb8… 3061… AGURTZA… AGURTZAB… BES   PJBL     8733…          418581
#> 2     1 3c99c326d… 2242… AGURTZA… AGURTZAB… ESP   EBSJ     8733…          135057
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

The results show this vessel’s story is grouped in two vesselIds.

To get a list of port visits for that vessel, you can use a single vesselId of your interest:

id <- vessel_info$selfReportedInfo$vesselId
id
#> [1] "6632c9eb8-8009-abdb-baf9-b67d65f20510"
#> [2] "3c99c326d-dd2e-175d-626f-a3c488a4342b"

get_event(event_type = 'PORT_VISIT',
          vessels = id[1],
          confidences = 4,
          key = key
          )
#> [1] "Downloading 25 events from GFW"
#> # A tibble: 25 × 15
#>    start               end                 eventId        eventType   lat    lon
#>    <dttm>              <dttm>              <chr>          <chr>     <dbl>  <dbl>
#>  1 2020-06-25 09:13:36 2020-06-25 20:31:10 29863e18bfa98… port_vis… 16.9  -25.0 
#>  2 2020-06-20 12:33:45 2020-06-20 19:43:10 a8f5401a3bbec… port_vis… 14.6  -17.4 
#>  3 2020-03-05 13:28:59 2020-03-10 02:26:24 0d845cb306614… port_vis…  5.20  -4.02
#>  4 2020-08-08 06:40:40 2020-08-10 08:13:39 acd48bf28e6b3… port_vis… 14.6  -17.4 
#>  5 2020-02-23 12:44:03 2020-02-24 10:35:02 672bc20417b3c… port_vis… 16.9  -25.0 
#>  6 2020-04-01 05:55:58 2020-04-05 15:03:18 953e1cf8246db… port_vis…  5.23  -4.02
#>  7 2020-04-19 06:16:46 2020-04-21 14:02:19 5ad5c93c5448d… port_vis… 28.1  -15.4 
#>  8 2020-08-19 09:44:55 2020-08-19 18:39:59 724b8c1b2fb6d… port_vis… 16.9  -25.0 
#>  9 2021-05-19 22:46:40 2021-06-08 08:54:49 ed0ffc8600077… port_vis… 14.7  -17.4 
#> 10 2020-07-06 06:45:06 2020-07-12 09:13:39 6845cffacfe25… port_vis…  5.20  -4.02
#> # ℹ 15 more rows
#> # ℹ 9 more variables: regions <list>, boundingBox <list>, distances <list>,
#> #   vesselId <chr>, vessel_name <chr>, vessel_ssvid <chr>, vessel_flag <chr>,
#> #   vessel_type <chr>, event_info <list>

But to get the whole event history, you can also use the whole vector of vesselId for that vessel:

get_event(event_type = 'PORT_VISIT',
          vessels = id, #using the whole vector of vesselIds
          confidences = 4,
          key = key
          )
#> [1] "Downloading 74 events from GFW"
#> # A tibble: 74 × 15
#>    start               end                 eventId        eventType   lat    lon
#>    <dttm>              <dttm>              <chr>          <chr>     <dbl>  <dbl>
#>  1 2016-03-03 05:47:02 2016-03-03 11:46:33 4a7f8049e265e… port_vis…  5.20  -4.02
#>  2 2019-08-05 07:57:25 2019-08-07 14:33:40 86eadd44ab4a9… port_vis… 14.6  -17.4 
#>  3 2016-03-31 04:43:41 2016-04-02 09:07:10 617db86945865… port_vis…  5.20  -4.02
#>  4 2019-07-09 09:31:01 2019-07-13 13:19:15 557fe44f868f3… port_vis…  5.23  -3.97
#>  5 2015-12-29 14:52:13 2016-01-03 16:38:59 ecd93cc08b521… port_vis…  5.29  -4.01
#>  6 2018-09-19 06:32:12 2018-09-22 11:02:34 04989af5b8533… port_vis…  5.23  -3.97
#>  7 2019-11-15 14:15:11 2019-11-19 07:49:20 bbeed3f884a6f… port_vis…  5.20  -4.02
#>  8 2016-04-20 06:50:58 2016-04-20 19:47:10 3c267cf9e13f5… port_vis… 14.7  -17.4 
#>  9 2016-04-24 07:14:33 2016-04-24 11:54:59 104e08b308b96… port_vis… 14.6  -17.4 
#> 10 2019-09-29 05:40:18 2019-10-02 17:16:39 baa809792afe6… port_vis… 14.6  -17.4 
#> # ℹ 64 more rows
#> # ℹ 9 more variables: regions <list>, boundingBox <list>, distances <list>,
#> #   vesselId <chr>, vessel_name <chr>, vessel_ssvid <chr>, vessel_flag <chr>,
#> #   vessel_type <chr>, event_info <list>

Note: Try narrowing your search using start_date and end_date if the request is too large and returns a time out error (524)

When a date range is provided to get_event() using both start_date and end_date, any event overlapping that range will be returned, including events that start prior to start_date or end after end_date. If just start_date or end_date are provided, results will include all events that end after start_date or begin prior to end_date, respectively.

Note:
Because encounter events are events between two vessels, a single event will be represented twice in the data, once for each vessel. To capture this information and link the related data rows, the id field for encounter events includes an additional suffix (1 or 2) separated by a period. The vessel field will also contain different information specific to each vessel.

Multiple vessel events

As another example, let’s combine the Vessels and Events APIs to get fishing events for a list of USA-flagged trawlers:

# Download the list of USA trawlers
usa_trawlers <- get_vessel_info(
  where = "flag='USA' AND geartypes='TRAWLERS'",
  search_type = "search",
  key = key,
  quiet = TRUE # quiet = FALSE if you want an estimate progress of the download
)

This list returns 6592 vesselIds belonging to 4144 vessels.

usa_trawlers$selfReportedInfo
#> # A tibble: 6,592 × 14
#>    index vesselId  ssvid shipname nShipname flag  callsign imo   messagesCounter
#>    <dbl> <chr>     <chr> <chr>    <chr>     <chr> <chr>    <chr>           <int>
#>  1     1 c698dfcc… 3677… TREMONT  TREMONT   USA   WDJ5556  <NA>            71116
#>  2     2 64907178… 3662… SUSAN L  SUSANL    USA   WQZ4631  <NA>          1539173
#>  3     3 5e6c03ec… 3682… CAPTAIN… CAPTAINT… USA   WDN3761  <NA>           786924
#>  4     3 045a49e9… 3680… AMG      AMG       USA   WDK2542  <NA>             9964
#>  5     3 161cee78… 3677… ATLANTI… ATLANTIS1 USA   WDI5729  <NA>             3288
#>  6     4 242fa3fb… 3670… TAUNY A… TAUNYANN  USA   WDC4097  <NA>          2038373
#>  7     5 0dddd2a8… 3673… SHAMROCK SHAMROCK  USA   WDD8722  <NA>             2720
#>  8     5 695b254f… 3673… SHAMROCK SHAMROCK  USA   <NA>     <NA>              477
#>  9     5 ac994bda… 3673… <NA>     <NA>      USA   WDD8722  <NA>             3179
#> 10     6 47b94476… 3668… ORION    ORION     USA   <NA>     <NA>            23007
#> # ℹ 6,582 more rows
#> # ℹ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> #   matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>

For clarity, we should try to send groups of vesselIds that belong to the same vessels. For this, we should check the index column in the $selfReportedInfo dataset.

Note: get_event() can receive up to 20 vessel ids at a time

each_USA_trawler <- usa_trawlers$selfReportedInfo[, c("index", "vesselId")] 
# how many vessels correspond to the first ten vessels. 
each_USA_trawler %>% filter(index <= 10)
#> # A tibble: 21 × 2
#>    index vesselId                             
#>    <dbl> <chr>                                
#>  1     1 c698dfcc5-5c85-9329-b1ac-8b3656ea9233
#>  2     2 64907178b-b02a-f401-afa1-b3a099d7a142
#>  3     3 5e6c03ecd-d774-2d00-6b39-21ab335fca3b
#>  4     3 045a49e97-7d67-6ef7-219c-fd1a270af740
#>  5     3 161cee78f-f568-b97e-cb75-5348a2d811ba
#>  6     4 242fa3fbf-fa03-eb47-5855-f0880b8e7acf
#>  7     5 0dddd2a83-3626-24f1-0fe6-3c4d45bbb409
#>  8     5 695b254f7-7e6c-ff50-dc63-55139d9e0101
#>  9     5 ac994bdab-b59c-9fcc-659e-40179e5dddfb
#> 10     6 47b944765-5819-b2ab-8c2e-cfc82bd2e82c
#> # ℹ 11 more rows
# It's exactly 20 in this case to we will request those.
ten_usa_trawlers <- each_USA_trawler %>% filter(index <= 10)

The first 20 vesselIds correspond to 10 vessels according to index.

Let’s pass the vector of vessel ids to Events API. Now get the list of fishing events for these trawlers in January, 2020:

events <- get_event(event_type = 'FISHING',
                    vessels = ten_usa_trawlers$vesselId,
                    start_date = "2020-01-01", 
                    end_date = "2020-02-01", 
                    key = key)
#> [1] "Downloading 31 events from GFW"
events
#> # A tibble: 31 × 16
#>    start               end                 eventId         eventType   lat   lon
#>    <dttm>              <dttm>              <chr>           <chr>     <dbl> <dbl>
#>  1 2020-01-10 18:21:53 2020-01-12 03:13:04 6739137b68e5fb… fishing    38.0 -73.9
#>  2 2020-01-22 03:07:24 2020-01-23 03:57:57 7812ab3b7950fc… fishing    38.0 -73.9
#>  3 2020-01-24 14:05:32 2020-01-24 22:02:36 761b7338d7e866… fishing    38.0 -74.0
#>  4 2020-01-21 10:19:37 2020-01-21 15:31:33 b07cba0b120d99… fishing    38.1 -73.9
#>  5 2020-01-09 12:30:54 2020-01-09 17:44:54 51c5140b261fca… fishing    38.4 -73.5
#>  6 2020-01-23 11:55:49 2020-01-23 22:03:58 6662cc521a4c81… fishing    38.0 -73.9
#>  7 2020-01-30 12:02:27 2020-01-30 21:34:23 9e8b988bfdfa30… fishing    38.0 -73.9
#>  8 2020-01-10 12:35:22 2020-01-10 16:22:01 4f20b44a59be19… fishing    38.0 -73.9
#>  9 2020-01-31 17:27:10 2020-01-31 23:44:46 4658cdceebbf29… fishing    38.0 -73.9
#> 10 2020-01-23 06:40:00 2020-01-23 07:48:45 5d37b7e7f124d8… fishing    38.0 -73.9
#> # ℹ 21 more rows
#> # ℹ 10 more variables: regions <list>, boundingBox <list>, distances <list>,
#> #   vesselId <chr>, vessel_name <chr>, vessel_ssvid <chr>, vessel_flag <chr>,
#> #   vessel_type <chr>, vessel_publicAuthorizations <list>, event_info <list>

The columns starting by vessel have the vessel-related information for each event: vesselId, vessel_name, ssvid (MMSI), flag, vessel type and public authorizations.

events %>% 
  dplyr::select(starts_with("vessel"))
#> # A tibble: 31 × 6
#>    vesselId                     vessel_name vessel_ssvid vessel_flag vessel_type
#>    <chr>                        <chr>       <chr>        <chr>       <chr>      
#>  1 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  2 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  3 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  4 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  5 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  6 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  7 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  8 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#>  9 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#> 10 64907178b-b02a-f401-afa1-b3… SUSAN L     366211560    USA         fishing    
#> # ℹ 21 more rows
#> # ℹ 1 more variable: vessel_publicAuthorizations <list>

When no events are available, the get_event() function returns nothing.

get_event(event_type = 'FISHING',
          vessels = ten_usa_trawlers$vesselId[2],
          start_date = "2020-01-01",
          end_date = "2020-01-01",
          key = key
          )
#> [1] "Your request returned zero results"
#> NULL

Fishing effort API

The get_raster() function gets a raster from the 4Wings API and converts the response to a data frame. In order to use it, you should specify:

  • The spatial resolution, which can be LOW (0.1 degree) or HIGH (0.01 degree)
  • The temporal resolution, which can be HOURLY, DAILY, MONTHLY, YEARLY or ENTIRE.
  • The variable to group by: FLAG, GEARTYPE, FLAGANDGEARTYPE, MMSI or VESSEL_ID
  • The date range note: this must be 366 days or less
  • The region polygon in sf format or the region code (such as an EEZ code) to filter the raster
  • The source for the specified region. Currently, EEZ, MPA, RFMO or USER_SHAPEFILE (for sf shapefiles).

Examples

We added a sample shapefile inside gfwr to show how 'USER_SHAPEFILE' works:

data("test_shape")

get_raster(
  spatial_resolution = 'LOW',
  temporal_resolution = 'YEARLY',
  group_by = 'FLAG',
  start_date = '2021-01-01',
  end_date = '2021-02-01',
  region = test_shape,
  region_source = 'USER_SHAPEFILE',
  key = key
  )
#> Rows: 2682 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 2,682 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  16.8  60.6         2021 CHN              1                     6.1 
#>  2  16.7  60.6         2021 CHN              1                    10.1 
#>  3  16.7  60.7         2021 CHN              1                     3.46
#>  4  17.2  61.5         2021 CHN              1                     2.96
#>  5  16.6  61.7         2021 CHN              1                     5.88
#>  6  16.7  61.7         2021 CHN              1                     5.44
#>  7  16.6  61.6         2021 CHN              1                    16.6 
#>  8  17    62.4         2021 CHN              1                     1.64
#>  9  16.9  62.4         2021 CHN              1                     6.38
#> 10  16.9  62.3         2021 CHN              1                     7.85
#> # ℹ 2,672 more rows

If you want raster data from a particular EEZ, you can use the get_region_id() function to get the EEZ id, and enter that code in the region argument of get_raster() instead of the region shapefile (ensuring you specify the region_source as 'EEZ':

# use EEZ function to get EEZ code of Cote d'Ivoire
code_eez <- get_region_id(region_name = 'CIV', region_source = 'EEZ', key = key)

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-10-01",
           region = code_eez$id,
           region_source = 'EEZ',
           key = key)
#> Rows: 596 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 596 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1   1.5  -6.6         2021 CPV              1                     3.97
#>  2   4    -6.9         2021 FRA              1                     7.4 
#>  3   5.2  -4           2021 ESP              9                    13.6 
#>  4   4.3  -4.1         2021 FRA              2                     3.57
#>  5   3.7  -4           2021 ESP              1                     0.94
#>  6   4.5  -3.8         2021 SLV              1                     8.13
#>  7   3.4  -3.9         2021 BES              1                     1.65
#>  8   5    -5.3         2021 CHN              2                    43.0 
#>  9   4.6  -5.2         2021 GHA              1                     2.97
#> 10   4.4  -3.9         2021 SEN              1                     1.84
#> # ℹ 586 more rows

You could search for just one word in the name of the EEZ and then decide which one you want:

(get_region_id(region_name = 'France', region_source = 'EEZ', key = key))
#> # A tibble: 3 × 3
#>      id label                            iso3 
#>   <dbl> <chr>                            <chr>
#> 1  5677 France                           FRA  
#> 2 48966 Joint regime area Spain / France FRA  
#> 3 48976 Joint regime area Italy / France FRA

From the results above, let’s say we’re interested in the French Exclusive Economic Zone, 5677

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-10-01",
           region = 5677,
           region_source = 'EEZ',
           key = key)
#> Rows: 5433 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 5,433 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  51     1.4         2021 NLD              5                     8.62
#>  2  50.9   1.4         2021 FRA             28                   885.  
#>  3  50.9   1.3         2021 FRA             23                    87   
#>  4  50.8   1.3         2021 BEL              1                     4.86
#>  5  50.8   1.3         2021 FRA             39                   685.  
#>  6  50.8   1.2         2021 GBR             11                   255.  
#>  7  50.7   1.4         2021 FRA             53                  2669.  
#>  8  51.5   2.1         2021 BEL              1                     7.04
#>  9  51.3   2.1         2021 NLD             19                    97.2 
#> 10  51.2   1.9         2021 FRA             20                   560.  
#> # ℹ 5,423 more rows

A similar approach can be used to search for a specific Marine Protected Area, in this case the Phoenix Island Protected Area (PIPA)

# use region id function to get MPA code of Phoenix Island Protected Area
code_mpa <- get_region_id(region_name = 'Phoenix',
                          region_source = 'MPA',
                          key = key)

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'YEARLY',
           group_by = 'FLAG',
           start_date = "2015-01-01",
           end_date = "2015-06-01",
           region = code_mpa$id[1],
           region_source = 'MPA',
           key = key)
#> Rows: 38 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 38 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl>        <dbl> <chr>        <dbl>                    <dbl>
#>  1  -3.6 -176.         2015 KIR              1                     6.07
#>  2  -3.1 -176.         2015 KOR              1                     0.91
#>  3  -3.4 -176.         2015 KOR              1                     2.38
#>  4  -3.5 -176.         2015 KOR              1                     9.74
#>  5  -3.6 -176.         2015 KOR              2                     9.34
#>  6  -3.6 -176.         2015 KOR              1                     1.98
#>  7  -3.6 -176.         2015 KOR              1                     7.9 
#>  8  -4.2 -176.         2015 KOR              1                     0.05
#>  9  -1   -170.         2015 KOR              1                     2.39
#> 10  -2.2 -176.         2015 KIR              1                     1.89
#> # ℹ 28 more rows

It is also possible to filter rasters to one of the five regional fisheries management organizations (RFMO) that manage tuna and tuna-like species. These include "ICCAT", "IATTC","IOTC", "CCSBT" and "WCPFC".

get_raster(spatial_resolution = 'LOW',
           temporal_resolution = 'DAILY',
           group_by = 'FLAG',
           start_date = "2021-01-01",
           end_date = "2021-01-04",
           region = 'ICCAT',
           region_source = 'RFMO',
           key = key)
#> Rows: 16709 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr  (1): flag
#> dbl  (4): Lat, Lon, Vessel IDs, Apparent Fishing Hours
#> date (1): Time Range
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 16,709 × 6
#>      Lat   Lon `Time Range` flag  `Vessel IDs` `Apparent Fishing Hours`
#>    <dbl> <dbl> <date>       <chr>        <dbl>                    <dbl>
#>  1  69.4 -58.5 2021-01-01   GRL              1                     4.03
#>  2  69.4 -58.4 2021-01-01   GRL              1                     1.26
#>  3  69.3 -58.4 2021-01-01   GRL              1                     3.21
#>  4  69.1 -58.5 2021-01-01   GRL              1                     1.24
#>  5  69.1 -58.4 2021-01-01   GRL              1                     1.05
#>  6  69   -58.5 2021-01-01   GRL              2                     5.71
#>  7  69   -58.4 2021-01-01   GRL              1                     0.71
#>  8  67.8 -56.6 2021-01-03   GRL              2                     1.78
#>  9  67.7 -56.6 2021-01-02   GRL              3                    39.6 
#> 10  67.8 -56.6 2021-01-02   GRL              1                     1.25
#> # ℹ 16,699 more rows

The get_region_id() function also works in reverse. If a region id is passed as a numeric to the function as the region_name, the corresponding region label or iso3 code can be returned. This is especially useful when events are returned with regions.

# using same example as above
get_event(event_type = 'FISHING',
          vessels = ten_usa_trawlers$vesselId,
          start_date = "2020-01-01",
          end_date = "2020-02-01",
          key = key
          ) %>% 
  # extract EEZ id code
  dplyr::mutate(eez = as.character(
    purrr::map(purrr::map(regions, purrr::pluck, 'eez'),
               paste0, collapse = ','))) %>%
  dplyr::select(eventId, eventType, start, end, lat, lon, eez) %>%
  dplyr::rowwise() %>%
  dplyr::mutate(eez_name = get_region_id(region_name = as.numeric(eez),
                                         region_source = 'EEZ',
                                         key = key)$label) %>% 
  dplyr::select(-start, -end)
#> [1] "Downloading 31 events from GFW"
#> # A tibble: 31 × 6
#> # Rowwise: 
#>    eventId                          eventType   lat   lon eez   eez_name     
#>    <chr>                            <chr>     <dbl> <dbl> <chr> <chr>        
#>  1 6739137b68e5fb477de38226f57892f7 fishing    38.0 -73.9 8456  United States
#>  2 7812ab3b7950fc01a2e0e1e8fda3710a fishing    38.0 -73.9 8456  United States
#>  3 761b7338d7e8667cbb220f7c2c49af43 fishing    38.0 -74.0 8456  United States
#>  4 b07cba0b120d99d177191663a3e1c67d fishing    38.1 -73.9 8456  United States
#>  5 51c5140b261fca6214ea872209b74d85 fishing    38.4 -73.5 8456  United States
#>  6 6662cc521a4c81f9943f6f006b939770 fishing    38.0 -73.9 8456  United States
#>  7 9e8b988bfdfa302f5c44b75f73208cf1 fishing    38.0 -73.9 8456  United States
#>  8 4f20b44a59be19f188863af0a57e44c9 fishing    38.0 -73.9 8456  United States
#>  9 4658cdceebbf29e39b695283dd77924a fishing    38.0 -73.9 8456  United States
#> 10 5d37b7e7f124d8e80eb3c683cc6bd1b4 fishing    38.0 -73.9 8456  United States
#> # ℹ 21 more rows

When your API request times out

For API performance reasons, the get_raster() function restricts individual queries to a single year of data. However, even with this restriction, it is possible for API request to time out before it completes. When this occurs, the initial get_raster() call will return an HTTP 524 error, and subsequent API requests using any gfwr get_ function will return an HTTP 429 error until the original request completes:

Error in httr2::req_perform(): ! HTTP 429 Too Many Requests. • Your application token is not currently enabled to perform more than one concurrent report. If you need to generate more than one report concurrently, contact us at [email protected]

Although no data was received, the request is still being processed by the APIs and will become available when it completes. To account for this, gfwr includes the get_last_report() function, which lets users request the results of their last API request with get_raster().

The get_last_report() function will tell you if the APIs are still processing your request and will download the results if the request has finished successfully. You will receive an error message if the request finished but resulted in an error or if it’s been >30 minutes since the last report was generated using get_raster(). For more information, see the Get last report generated endpoint documentation on the GFW API page.

Contributing

We welcome all contributions to improve the package! Please read our Contribution Guide and reach out!