-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
CPU simulated benchmarking for GKE cluster. (#143)
* Simulated CPU multi node checkpointing on GKE cluster.
- Loading branch information
Showing
1 changed file
with
170 additions
and
0 deletions.
There are no files selected for viewing
170 changes: 170 additions & 0 deletions
170
dataflux_pytorch/benchmark/checkpointing/simulated/multi_node_benchmark.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
import os | ||
import socket | ||
import statistics | ||
import time | ||
from typing import Optional, Dict | ||
|
||
import torch | ||
import torch.distributed as dist | ||
import torch.distributed.checkpoint as dist_cp | ||
import torch.nn as nn | ||
from lightning.pytorch.strategies import FSDPStrategy | ||
from dataflux_pytorch.lightning.gcs_filesystem import GCSDistributedWriter, GCSDistributedReader | ||
|
||
|
||
class BenchmarkStrategy(FSDPStrategy): | ||
def __init__(self, project: str, path: str, model: nn.Module, **kwargs) -> None: | ||
super().__init__(**kwargs) | ||
self.writer = GCSDistributedWriter(path, project, None) | ||
self.reader = GCSDistributedReader(path, project, None) | ||
self.model = model | ||
|
||
def save_checkpoint(self, checkpoint: Dict[str, torch.Tensor], filepath: str, storage_options: Optional[Dict] = None) -> None: | ||
dist_cp.save(state_dict=checkpoint, checkpoint_id=filepath, | ||
storage_writer=self.writer) | ||
|
||
def load_checkpoint(self, checkpoint_path: str) -> None: | ||
empty_state_dict = {} | ||
dist_cp.load(state_dict=empty_state_dict, | ||
checkpoint_id=checkpoint_path, storage_reader=self.reader) | ||
|
||
|
||
class SimpleModel(nn.Module): | ||
def __init__(self, size: int, padding_size: int) -> None: | ||
super(SimpleModel, self).__init__() | ||
self.fc1 = nn.Linear(size, size) | ||
self.fc2 = nn.Linear(size, size) | ||
self.dummy_tensors = [torch.randn(size, size) | ||
for _ in range(padding_size)] | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
return self.fc2(torch.relu(self.fc1(x))) | ||
|
||
|
||
def format_size(size_bytes: int) -> str: | ||
size_mb = size_bytes / (1024 * 1024) | ||
return f"{size_mb / 1024:.2f} GB" if size_mb >= 1024 else f"{size_mb:.2f} MB" | ||
|
||
|
||
def get_tensor_size_bytes(tensor: torch.Tensor) -> int: | ||
return tensor.element_size() * tensor.numel() | ||
|
||
|
||
def configure_master_addr(): | ||
"""Get coordinator IP Address with retries""" | ||
coordinator_address = "" | ||
coordinator_ip_address = "" | ||
if os.environ.get("COORDINATOR_ADDRESS") is not None: | ||
coordinator_address = os.environ.get("COORDINATOR_ADDRESS") | ||
coordinator_found = False | ||
lookup_attempt = 1 | ||
max_coordinator_lookups = 50 | ||
while not coordinator_found and lookup_attempt <= max_coordinator_lookups: | ||
try: | ||
coordinator_ip_address = socket.gethostbyname( | ||
coordinator_address) | ||
coordinator_found = True | ||
except socket.gaierror: | ||
print( | ||
f"Failed to recognize coordinator address {coordinator_address} on" | ||
f" attempt {lookup_attempt}, retrying...") | ||
lookup_attempt += 1 | ||
time.sleep(5) | ||
print(f"Coordinator IP address: {coordinator_ip_address}") | ||
os.environ["MASTER_ADDR"] = str(coordinator_ip_address) | ||
|
||
|
||
def init_processes() -> int: | ||
"""Initializes the distributed environment.""" | ||
world_size = int(os.environ["WORLD_SIZE"]) | ||
job_index = int(os.environ.get("JOB_INDEX", 0)) | ||
job_completion_index = int(os.environ.get("JOB_COMPLETION_INDEX", 0)) | ||
processes_in_job = int(os.environ.get("PROCESSES_IN_JOB", 1)) | ||
rank = job_index * processes_in_job + job_completion_index | ||
os.environ["NODE_RANK"] = str(rank) | ||
|
||
configure_master_addr() | ||
torch.distributed.init_process_group( | ||
backend='gloo', rank=rank, world_size=world_size) | ||
return rank | ||
|
||
|
||
def cleanup() -> None: | ||
dist.destroy_process_group() | ||
|
||
|
||
def split_tensor(tensor: torch.Tensor, world_size: int, rank: int) -> torch.Tensor: | ||
numel = tensor.numel() | ||
split_size = numel // world_size | ||
start_idx = rank * split_size | ||
end_idx = start_idx + split_size if rank != world_size - 1 else numel | ||
return tensor.view(-1)[start_idx:end_idx] | ||
|
||
|
||
def time_checkpoint_operation(benchmark_strategy: BenchmarkStrategy, distributed_state_dict: Dict[str, torch.Tensor], filepath: str, sample_size: int, operation: str) -> list: | ||
times = [] | ||
for i in range(sample_size): | ||
start_time = time.time() | ||
if operation == 'save': | ||
checkpoint_path = os.path.join( | ||
filepath, f'checkpoints/ckpt_{i}.ckpt') | ||
benchmark_strategy.save_checkpoint( | ||
distributed_state_dict, filepath=checkpoint_path) | ||
elif operation == 'load': | ||
checkpoint_path = os.path.join( | ||
filepath, f'checkpoints/ckpt_{i}.ckpt') | ||
benchmark_strategy.load_checkpoint(checkpoint_path=checkpoint_path) | ||
end_time = time.time() | ||
times.append(end_time - start_time) | ||
dist.barrier() # Synchronize processes | ||
return times | ||
|
||
|
||
def main(world_size: int, model_size: int, project: str, filepath: str, padding_size: int, sample_size: int) -> None: | ||
rank = init_processes() if os.environ.get("COORDINATOR_ADDRESS") else 0 | ||
model = SimpleModel(model_size, padding_size) | ||
|
||
dummy_input = torch.randn(100, model_size) | ||
_ = model(dummy_input) | ||
|
||
full_state_dict = model.state_dict() | ||
for i, tensor in enumerate(model.dummy_tensors): | ||
full_state_dict[f'dummy_tensor_{i}'] = tensor | ||
|
||
benchmark_strategy = BenchmarkStrategy( | ||
project=project, path=filepath, model=model) | ||
|
||
distributed_state_dict = {f"{key}_shard_{rank}": split_tensor( | ||
tensor, world_size, rank) for key, tensor in full_state_dict.items()} | ||
|
||
save_checkpoint_times = time_checkpoint_operation( | ||
benchmark_strategy, distributed_state_dict, filepath, sample_size, 'save') | ||
load_checkpoint_times = time_checkpoint_operation( | ||
benchmark_strategy, distributed_state_dict, filepath, sample_size, 'load') | ||
|
||
if rank == 0: | ||
print("######################") | ||
print( | ||
f"Time taken to save checkpoint: {statistics.mean(save_checkpoint_times):.4f} seconds") | ||
print( | ||
f"Time taken to load checkpoint: {statistics.mean(load_checkpoint_times):.4f} seconds") | ||
total_distributed_size_bytes = sum(get_tensor_size_bytes( | ||
tensor) for tensor in distributed_state_dict.values()) | ||
print( | ||
f"Size of distributed tensors (rank {rank}): {format_size(total_distributed_size_bytes)}") | ||
print( | ||
f"Total size of all tensors (rank {rank}): {format_size(total_distributed_size_bytes * world_size)}") | ||
print("######################") | ||
|
||
cleanup() | ||
|
||
|
||
if __name__ == "__main__": | ||
world_size = int(os.getenv("WORLD_SIZE")) | ||
model_size = int(os.getenv("NUM_LAYERS")) | ||
project = os.getenv("PROJECT") | ||
path = os.getenv("CKPT_DIR_PATH") | ||
sample_size = int(os.getenv("SAMPLE_SIZE", 3)) | ||
padding_size = int(os.getenv("PADDING_SIZE", 2000)) | ||
main(world_size, model_size, | ||
project, path, padding_size, sample_size) |