forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 66
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Ensure buckets do not exceed the batch token limit #206
Merged
kzawora-intel
merged 2 commits into
habana_main
from
private/kzawora/max_num_batched_tokens
Aug 27, 2024
Merged
Ensure buckets do not exceed the batch token limit #206
kzawora-intel
merged 2 commits into
habana_main
from
private/kzawora/max_num_batched_tokens
Aug 27, 2024
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
LGTM |
szutenberg
added a commit
that referenced
this pull request
Aug 27, 2024
This reverts commit aefd336.
zhouyu5
pushed a commit
to zhouyu5/vllm-fork
that referenced
this pull request
Sep 13, 2024
This PR ensures we don't capture buckets that are above the specified token budget (as set by `max_num_batched_tokens` argument) Example for token budget of 2048 (`--max-num-batched-tokens 2048`): ``` $ python vllm_test.py --max-num-batched-tokens 2048 WARNING 08-27 14:48:55 _custom_ops.py:14] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") /usr/local/lib/python3.10/dist-packages/torch/distributed/distributed_c10d.py:366: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead warnings.warn( No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues. INFO 08-27 14:48:56 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='facebook/opt-125m', speculative_config=None, tokenizer='facebook/opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, weights_load_device=hpu, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=hpu, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=facebook/opt-125m, use_v2_block_manager=False, enable_prefix_caching=False) generation_config.json: 100%|███████████████████████████████████████████████████████████████████████████████████████| 137/137 [00:00<00:00, 1.91MB/s] INFO 08-27 14:48:57 profiler.py:62] Profiler enabled for: vllm-instance-d356a015eeb349f7a4650e00bf6ce976 WARNING 08-27 14:48:57 utils.py:566] Pin memory is not supported on HPU. INFO 08-27 14:48:57 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:48:57 habana_model_runner.py:532] Prompt bucket config (min, step, max_warmup) bs:[1, 32, 64], seq:[128, 128, 1024] INFO 08-27 14:48:57 habana_model_runner.py:545] Generated 23 prompt buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (8, 128), (8, 256), (16, 128)] INFO 08-27 14:48:57 habana_model_runner.py:550] Decode bucket config (min, step, max_warmup) bs:[1, 128, 256], seq:[128, 128, 2048] INFO 08-27 14:48:57 habana_model_runner.py:561] Generated 31 decode buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (1, 1280), (1, 1408), (1, 1536), (1, 1664), (1, 1792), (1, 1920), (1, 2048), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (8, 128), (8, 256), (16, 128)] ============================= HABANA PT BRIDGE CONFIGURATION =========================== PT_HPU_LAZY_MODE = 1 PT_RECIPE_CACHE_PATH = PT_CACHE_FOLDER_DELETE = 0 PT_HPU_RECIPE_CACHE_CONFIG = PT_HPU_MAX_COMPOUND_OP_SIZE = 9223372036854775807 PT_HPU_LAZY_ACC_PAR_MODE = 1 PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES = 0 ---------------------------: System Configuration :--------------------------- Num CPU Cores : 160 CPU RAM : 1056398260 KB ------------------------------------------------------------------------------ INFO 08-27 14:49:00 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:49:00 loader.py:284] Loading weights on hpu ... INFO 08-27 14:49:00 weight_utils.py:224] Using model weights format ['*.bin'] pytorch_model.bin: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 251M/251M [00:06<00:00, 35.9MB/s] Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.15it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.15it/s] INFO 08-27 14:49:08 habana_model_runner.py:441] Pre-loading model weights on hpu:0 took 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 298.9 MiB of host memory (485.6 GiB/1007 GiB used) INFO 08-27 14:49:08 habana_model_runner.py:486] Wrapping in HPU Graph took 0 B of device memory (244.4 MiB/94.62 GiB used) and 0 B of host memory (485.6 GiB/1007 GiB used) INFO 08-27 14:49:08 habana_model_runner.py:490] Loading model weights took in total 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 298.2 MiB of host memory (485.6 GiB/1007 GiB used) ``` We can see that no bucket exceeds 2048 tokens, and we have `(16, 128)` as well as `(1, 2048)`. Previously, with default bucket settings, we'd also capture `(16, 2048)`, and `(64, 2048)` cases, which should not be allowed. With `--max-num-batched-tokens 32768`: ``` $ python vllm_test.py --max-num-batched-tokens 32768 WARNING 08-27 14:54:39 _custom_ops.py:14] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") /usr/local/lib/python3.10/dist-packages/torch/distributed/distributed_c10d.py:366: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead warnings.warn( No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues. INFO 08-27 14:54:41 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='facebook/opt-125m', speculative_config=None, tokenizer='facebook/opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, weights_load_device=hpu, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=hpu, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=facebook/opt-125m, use_v2_block_manager=False, enable_prefix_caching=False) INFO 08-27 14:54:41 profiler.py:62] Profiler enabled for: vllm-instance-be8ab3101609425ba60df601dc9de3a6 WARNING 08-27 14:54:41 utils.py:566] Pin memory is not supported on HPU. INFO 08-27 14:54:41 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:54:41 habana_model_runner.py:533] Prompt bucket config (min, step, max_warmup) bs:[1, 32, 64], seq:[128, 128, 1024] INFO 08-27 14:54:41 habana_model_runner.py:546] Generated 52 prompt buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (64, 128), (64, 256), (64, 384), (64, 512)] INFO 08-27 14:54:41 habana_model_runner.py:551] Decode bucket config (min, step, max_warmup) bs:[1, 128, 256], seq:[128, 128, 2048] INFO 08-27 14:54:41 habana_model_runner.py:562] Generated 95 decode buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (1, 1280), (1, 1408), (1, 1536), (1, 1664), (1, 1792), (1, 1920), (1, 2048), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (2, 1152), (2, 1280), (2, 1408), (2, 1536), (2, 1664), (2, 1792), (2, 1920), (2, 2048), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (4, 1152), (4, 1280), (4, 1408), (4, 1536), (4, 1664), (4, 1792), (4, 1920), (4, 2048), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (8, 1152), (8, 1280), (8, 1408), (8, 1536), (8, 1664), (8, 1792), (8, 1920), (8, 2048), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (16, 1152), (16, 1280), (16, 1408), (16, 1536), (16, 1664), (16, 1792), (16, 1920), (16, 2048), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (64, 128), (64, 256), (64, 384), (64, 512), (128, 128), (128, 256), (256, 128)] ============================= HABANA PT BRIDGE CONFIGURATION =========================== PT_HPU_LAZY_MODE = 1 PT_RECIPE_CACHE_PATH = PT_CACHE_FOLDER_DELETE = 0 PT_HPU_RECIPE_CACHE_CONFIG = PT_HPU_MAX_COMPOUND_OP_SIZE = 9223372036854775807 PT_HPU_LAZY_ACC_PAR_MODE = 1 PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES = 0 ---------------------------: System Configuration :--------------------------- Num CPU Cores : 160 CPU RAM : 1056398260 KB ------------------------------------------------------------------------------ INFO 08-27 14:54:45 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:54:45 loader.py:284] Loading weights on hpu ... INFO 08-27 14:54:45 weight_utils.py:224] Using model weights format ['*.bin'] Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.99it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.99it/s] INFO 08-27 14:54:45 habana_model_runner.py:442] Pre-loading model weights on hpu:0 took 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 279.7 MiB of host memory (485.8 GiB/1007 GiB used) INFO 08-27 14:54:46 habana_model_runner.py:487] Wrapping in HPU Graph took 0 B of device memory (244.4 MiB/94.62 GiB used) and 48 KiB of host memory (485.8 GiB/1007 GiB used) INFO 08-27 14:54:46 habana_model_runner.py:491] Loading model weights took in total 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 279.6 MiB of host memory (485.8 GiB/1007 GiB used) ``` Max model length (2048) is not exceeded for low batch, as seen in `(1, 2048)` bucket, but we can still get high batch sizes captured up to 32k tokens, as seen in `(256, 128)` bucket.
zhouyu5
pushed a commit
to zhouyu5/vllm-fork
that referenced
this pull request
Sep 20, 2024
This PR ensures we don't capture buckets that are above the specified token budget (as set by `max_num_batched_tokens` argument) Example for token budget of 2048 (`--max-num-batched-tokens 2048`): ``` $ python vllm_test.py --max-num-batched-tokens 2048 WARNING 08-27 14:48:55 _custom_ops.py:14] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") /usr/local/lib/python3.10/dist-packages/torch/distributed/distributed_c10d.py:366: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead warnings.warn( No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues. INFO 08-27 14:48:56 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='facebook/opt-125m', speculative_config=None, tokenizer='facebook/opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, weights_load_device=hpu, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=hpu, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=facebook/opt-125m, use_v2_block_manager=False, enable_prefix_caching=False) generation_config.json: 100%|███████████████████████████████████████████████████████████████████████████████████████| 137/137 [00:00<00:00, 1.91MB/s] INFO 08-27 14:48:57 profiler.py:62] Profiler enabled for: vllm-instance-d356a015eeb349f7a4650e00bf6ce976 WARNING 08-27 14:48:57 utils.py:566] Pin memory is not supported on HPU. INFO 08-27 14:48:57 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:48:57 habana_model_runner.py:532] Prompt bucket config (min, step, max_warmup) bs:[1, 32, 64], seq:[128, 128, 1024] INFO 08-27 14:48:57 habana_model_runner.py:545] Generated 23 prompt buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (8, 128), (8, 256), (16, 128)] INFO 08-27 14:48:57 habana_model_runner.py:550] Decode bucket config (min, step, max_warmup) bs:[1, 128, 256], seq:[128, 128, 2048] INFO 08-27 14:48:57 habana_model_runner.py:561] Generated 31 decode buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (1, 1280), (1, 1408), (1, 1536), (1, 1664), (1, 1792), (1, 1920), (1, 2048), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (8, 128), (8, 256), (16, 128)] ============================= HABANA PT BRIDGE CONFIGURATION =========================== PT_HPU_LAZY_MODE = 1 PT_RECIPE_CACHE_PATH = PT_CACHE_FOLDER_DELETE = 0 PT_HPU_RECIPE_CACHE_CONFIG = PT_HPU_MAX_COMPOUND_OP_SIZE = 9223372036854775807 PT_HPU_LAZY_ACC_PAR_MODE = 1 PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES = 0 ---------------------------: System Configuration :--------------------------- Num CPU Cores : 160 CPU RAM : 1056398260 KB ------------------------------------------------------------------------------ INFO 08-27 14:49:00 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:49:00 loader.py:284] Loading weights on hpu ... INFO 08-27 14:49:00 weight_utils.py:224] Using model weights format ['*.bin'] pytorch_model.bin: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 251M/251M [00:06<00:00, 35.9MB/s] Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.15it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.15it/s] INFO 08-27 14:49:08 habana_model_runner.py:441] Pre-loading model weights on hpu:0 took 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 298.9 MiB of host memory (485.6 GiB/1007 GiB used) INFO 08-27 14:49:08 habana_model_runner.py:486] Wrapping in HPU Graph took 0 B of device memory (244.4 MiB/94.62 GiB used) and 0 B of host memory (485.6 GiB/1007 GiB used) INFO 08-27 14:49:08 habana_model_runner.py:490] Loading model weights took in total 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 298.2 MiB of host memory (485.6 GiB/1007 GiB used) ``` We can see that no bucket exceeds 2048 tokens, and we have `(16, 128)` as well as `(1, 2048)`. Previously, with default bucket settings, we'd also capture `(16, 2048)`, and `(64, 2048)` cases, which should not be allowed. With `--max-num-batched-tokens 32768`: ``` $ python vllm_test.py --max-num-batched-tokens 32768 WARNING 08-27 14:54:39 _custom_ops.py:14] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") /usr/local/lib/python3.10/dist-packages/torch/distributed/distributed_c10d.py:366: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead warnings.warn( No chat template is set for this tokenizer, falling back to a default class-level template. This is very error-prone, because models are often trained with templates different from the class default! Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which point any code depending on them will stop working. We recommend setting a valid chat template before then to ensure that this model continues working without issues. INFO 08-27 14:54:41 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='facebook/opt-125m', speculative_config=None, tokenizer='facebook/opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, weights_load_device=hpu, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=hpu, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=facebook/opt-125m, use_v2_block_manager=False, enable_prefix_caching=False) INFO 08-27 14:54:41 profiler.py:62] Profiler enabled for: vllm-instance-be8ab3101609425ba60df601dc9de3a6 WARNING 08-27 14:54:41 utils.py:566] Pin memory is not supported on HPU. INFO 08-27 14:54:41 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:54:41 habana_model_runner.py:533] Prompt bucket config (min, step, max_warmup) bs:[1, 32, 64], seq:[128, 128, 1024] INFO 08-27 14:54:41 habana_model_runner.py:546] Generated 52 prompt buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (64, 128), (64, 256), (64, 384), (64, 512)] INFO 08-27 14:54:41 habana_model_runner.py:551] Decode bucket config (min, step, max_warmup) bs:[1, 128, 256], seq:[128, 128, 2048] INFO 08-27 14:54:41 habana_model_runner.py:562] Generated 95 decode buckets: [(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (1, 1280), (1, 1408), (1, 1536), (1, 1664), (1, 1792), (1, 1920), (1, 2048), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (2, 1152), (2, 1280), (2, 1408), (2, 1536), (2, 1664), (2, 1792), (2, 1920), (2, 2048), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (4, 1152), (4, 1280), (4, 1408), (4, 1536), (4, 1664), (4, 1792), (4, 1920), (4, 2048), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (8, 1152), (8, 1280), (8, 1408), (8, 1536), (8, 1664), (8, 1792), (8, 1920), (8, 2048), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (16, 1152), (16, 1280), (16, 1408), (16, 1536), (16, 1664), (16, 1792), (16, 1920), (16, 2048), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (64, 128), (64, 256), (64, 384), (64, 512), (128, 128), (128, 256), (256, 128)] ============================= HABANA PT BRIDGE CONFIGURATION =========================== PT_HPU_LAZY_MODE = 1 PT_RECIPE_CACHE_PATH = PT_CACHE_FOLDER_DELETE = 0 PT_HPU_RECIPE_CACHE_CONFIG = PT_HPU_MAX_COMPOUND_OP_SIZE = 9223372036854775807 PT_HPU_LAZY_ACC_PAR_MODE = 1 PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES = 0 ---------------------------: System Configuration :--------------------------- Num CPU Cores : 160 CPU RAM : 1056398260 KB ------------------------------------------------------------------------------ INFO 08-27 14:54:45 selector.py:85] Using HabanaAttention backend. INFO 08-27 14:54:45 loader.py:284] Loading weights on hpu ... INFO 08-27 14:54:45 weight_utils.py:224] Using model weights format ['*.bin'] Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.99it/s] Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.99it/s] INFO 08-27 14:54:45 habana_model_runner.py:442] Pre-loading model weights on hpu:0 took 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 279.7 MiB of host memory (485.8 GiB/1007 GiB used) INFO 08-27 14:54:46 habana_model_runner.py:487] Wrapping in HPU Graph took 0 B of device memory (244.4 MiB/94.62 GiB used) and 48 KiB of host memory (485.8 GiB/1007 GiB used) INFO 08-27 14:54:46 habana_model_runner.py:491] Loading model weights took in total 238.9 MiB of device memory (244.4 MiB/94.62 GiB used) and 279.6 MiB of host memory (485.8 GiB/1007 GiB used) ``` Max model length (2048) is not exceeded for low batch, as seen in `(1, 2048)` bucket, but we can still get high batch sizes captured up to 32k tokens, as seen in `(256, 128)` bucket.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR ensures we don't capture buckets that are above the specified token budget (as set by
max_num_batched_tokens
argument)Example for token budget of 2048 (
--max-num-batched-tokens 2048
):We can see that no bucket exceeds 2048 tokens, and we have
(16, 128)
as well as(1, 2048)
. Previously, with default bucket settings, we'd also capture(16, 2048)
, and(64, 2048)
cases, which should not be allowed.With
--max-num-batched-tokens 32768
:Max model length (2048) is not exceeded for low batch, as seen in
(1, 2048)
bucket, but we can still get high batch sizes captured up to 32k tokens, as seen in(256, 128)
bucket.