Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add run_lm_eval.py #791

Merged
merged 1 commit into from
Feb 6, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 87 additions & 0 deletions scripts/run_lm_eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
from vllm import LLM, SamplingParams

import argparse
import os
import json

model_path = "/data/models/DeepSeek-R1/"
#model_path = "/mnt/workdisk/dohayon/Projects/R1/DeepSeek-R1-fp8/"
# model_path = "deepseek-ai/DeepSeek-V2-Lite"

# Parse the command-line arguments.
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default=model_path, help="The model path.")
parser.add_argument("--task", type=str, default="gsm8k", help="The model path.")
parser.add_argument("--tokenizer", type=str, default=model_path, help="The model path.")
parser.add_argument("--tp_size", type=int, default=8, help="Tensor Parallelism size.")
parser.add_argument("--ep_size", type=int, default=4, help="Expert Parallelism size.")
parser.add_argument("-l", "--limit", type=int, default=16, help="test request counts.")
args = parser.parse_args()

os.environ["VLLM_SKIP_WARMUP"] = "true"
os.environ["HABANA_VISIBLE_DEVICES"] = "ALL"
os.environ["PT_HPU_ENABLE_LAZY_COLLECTIVES"] = "true"
if args.ep_size > 1:
os.environ["VLLM_MOE_N_SLICE"] = "1"
os.environ["VLLM_EP_SIZE"] = f"{args.ep_size}"
else:
os.environ["VLLM_MOE_N_SLICE"] = "4"
os.environ["VLLM_EP_SIZE"] = "1"

os.environ["VLLM_MLA_DISABLE_REQUANTIZATION"] = "1"
os.environ["PT_HPU_WEIGHT_SHARING"] = "0"

if __name__ == "__main__":

from lm_eval.models.vllm_causallms import VLLM
from lm_eval import simple_evaluate

model = args.model
if args.tp_size == 1:
llm = VLLM(
pretrained=model,
tokenizer=args.tokenizer,
trust_remote_code=True,
dtype="bfloat16",
max_model_len=4096,
gpu_memory_utilization=0.8,
)
else:
llm = VLLM(
pretrained=model,
tokenizer=args.tokenizer,
tensor_parallel_size=args.tp_size,
distributed_executor_backend='mp',
trust_remote_code=True,
max_model_len=4096,
dtype="bfloat16",
gpu_memory_utilization=0.8,
)


# Run the evaluation; you can adjust num_fewshot and batch_size as needed.
if args.task == "gsm8k":
results = simple_evaluate(model=llm, tasks=["gsm8k"], num_fewshot=5, batch_size=8, limit=args.limit)
# save as json
with open(f"gsm8k_ep{args.ep_size}_result_samples.jsonl", "w") as f:
json.dump(results['results'], f)
f.write("\n")
for sample in results['samples']['gsm8k']:
json.dump(sample, f)
f.write("\n")
elif args.task == "hallaswag":
results = simple_evaluate(model=llm, tasks=["hellaswag"], num_fewshot=0, batch_size=8, limit=args.limit)
with open(f"hallaswag_ep{args.ep_size}_result_samples.jsonl", "w") as f:
json.dump(results['results'], f)
f.write("\n")
for sample in results['samples']['hellaswag']:
json.dump(sample, f)
f.write("\n")

del llm
print("============ Completed ============")

# Print out the results.
print("Evaluation Results:")
for task, metrics in results['results'].items():
print(f"{task}: {metrics}")
Loading