Skip to content

Code for paper: Hualie Jiang, Rui Huang. High Quality Monocular Depth Estimation Via a Multi-Scale Network And a Detail-Preserving Objective. ICIP 2019.

Notifications You must be signed in to change notification settings

HalleyJiang/HQMDE

Repository files navigation

Tensorflow implementation for HIGH-QUALITY-MONOCULAR-DEPTH-ESTIMATION

High Quality Monocular Depth Estimation via a Multi-scale Netowrk and Detail-perserving Objective

  1. To trian the model with the full loss of the paper on the NYU Depth V2 dataset,
    python train.py
    --dataset nyu_depth_v2
    --train_file "../filenames/nyu_depth_v2_train_even.txt"
    --val_file "../filenames/nyu_depth_v2_val_2k.txt"
    --cnn_model "resnet_v2_50"
    --decoding_at_image_size
    --output_stride 16
    --multi_grid 1 2 4
    --aspp_rates 4 8 12
    --loss_depth_norm berhu
    --loss_gradient_magnitude_norm l1
    --loss_gradient_magnitude_weight 1.0
    --loss_gradient_direction_norm l1
    --loss_gradient_direction_weight 1.0
    --loss_normal_weight 0.0
    --batch_size 8
    --num_epochs 20
    --learning_rate 1e-4
    --num_gpus 1
    --num_threads 4
    --batch_norm_epsilon 1e-5
    --batch_norm_decay 0.9997
    --l2_regularizer 1e-4

  2. To evaluate on the model,
    python test_nyu_depth_v2.py --process_id_for_evaluation pid(12582)
    You can download the trained model and results of the testset from Badidu NetDisk,
    link: https://pan.baidu.com/s/1tihXtR72Y-M_PyyOhYEryQ code: gmfx

Test performance:
|abs_rel: 0.127 |sq_rel: 0.088 |rmse: 0.468 |rmse_log: 0.165 |log10: 0.054 |acc1: 0.841 |acc2: 0.967 |acc3: 0.993

About

Code for paper: Hualie Jiang, Rui Huang. High Quality Monocular Depth Estimation Via a Multi-Scale Network And a Detail-Preserving Objective. ICIP 2019.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages