High Quality Monocular Depth Estimation via a Multi-scale Netowrk and Detail-perserving Objective
-
To trian the model with the full loss of the paper on the NYU Depth V2 dataset,
python train.py
--dataset nyu_depth_v2
--train_file "../filenames/nyu_depth_v2_train_even.txt"
--val_file "../filenames/nyu_depth_v2_val_2k.txt"
--cnn_model "resnet_v2_50"
--decoding_at_image_size
--output_stride 16
--multi_grid 1 2 4
--aspp_rates 4 8 12
--loss_depth_norm berhu
--loss_gradient_magnitude_norm l1
--loss_gradient_magnitude_weight 1.0
--loss_gradient_direction_norm l1
--loss_gradient_direction_weight 1.0
--loss_normal_weight 0.0
--batch_size 8
--num_epochs 20
--learning_rate 1e-4
--num_gpus 1
--num_threads 4
--batch_norm_epsilon 1e-5
--batch_norm_decay 0.9997
--l2_regularizer 1e-4 -
To evaluate on the model,
python test_nyu_depth_v2.py --process_id_for_evaluation pid(12582)
You can download the trained model and results of the testset from Badidu NetDisk,
link: https://pan.baidu.com/s/1tihXtR72Y-M_PyyOhYEryQ code: gmfx
Test performance:
|abs_rel: 0.127 |sq_rel: 0.088 |rmse: 0.468 |rmse_log: 0.165 |log10: 0.054 |acc1: 0.841 |acc2: 0.967 |acc3: 0.993