Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upload Db2 Hackathon Project into Db2 ML Samples #15

Merged
merged 14 commits into from
Dec 3, 2019
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Db2 Hackathon - Learnware

Our recent Db2 hackathon demonstrate the versatile powers of Db2 combined with machine learning, web development, and blochaine. Through this hackathon, we had three amazing winners that used our products in intriguing ways that we would like to showcase. One of the three winners was ***Kuro Souza***. Kuro's project was called `Learnware`. This project used open source data in order to predict student performance. The steps below will show how to re-create Kuro's work for you to try out!


Original Data Files - https://www.kaggle.com/rocki37/open-university-learning-analytics-dataset


Live Version of Learnware - http://sparge1.fyre.ibm.com:8888/notebooks/notebook/learnware.ipynb
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is internal-only and won't be broadly useful to external consumers of this sample. Should we change or remove this?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I think you are right. I took it out of the README.md now. It should be good to go


## Upload Data Files to Db2

The first thing we need to do is upload all the data files into your Db2 instance. If you open the `learnware.ipynb`, the names of the tables for each data file is outlined in the `table_names` list. For reference I have outlined them over here as well.

1. 'STUDENT_INFO'
2. 'ASSESSMENTS'
3. 'COURSES'
4. 'VLE'
5. 'STUDENT_ASSESSMENT'
6. 'STUDENT_REGISTRATION'
7. 'STUDENT_VLE2'

**Important Note** Make sure you acquire the service credentials for your Db2 instance in order to connect to the database through the notebook


## Learnware

Once the data files have been uploaded with the correct table names, we can now use the `learnware.ipynb` notebook to create our model. As you go through the notebook, make sure to replace the `<>` with your own db2 instance service credentials.

## Special Notes

Special thanks Kuro Souza for letting us use to Db2 Hackathon project as a way to demonstrate the power the Db2 paired with AI and machine learning!

Check you this Github repo - https://github.com/kurosouza

This notebook and project has only been run on Db2 on Cloud Free Tier instance.

Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
"code_module","code_presentation","id_assessment","assessment_type","date","weight"
"AAA","2013J","1752","TMA","19","10"
"AAA","2013J","1753","TMA","54","20"
"AAA","2013J","1754","TMA","117","20"
"AAA","2013J","1755","TMA","166","20"
"AAA","2013J","1756","TMA","215","30"
"AAA","2013J","1757","Exam","","100"
"AAA","2014J","1758","TMA","19","10"
"AAA","2014J","1759","TMA","54","20"
"AAA","2014J","1760","TMA","117","20"
"AAA","2014J","1761","TMA","166","20"
"AAA","2014J","1762","TMA","215","30"
"AAA","2014J","1763","Exam","","100"
"BBB","2013B","14991","CMA","54","1"
"BBB","2013B","14992","CMA","89","1"
"BBB","2013B","14993","CMA","124","1"
"BBB","2013B","14994","CMA","159","1"
"BBB","2013B","14995","CMA","187","1"
"BBB","2013B","14984","TMA","19","5"
"BBB","2013B","14985","TMA","47","18"
"BBB","2013B","14986","TMA","89","18"
"BBB","2013B","14987","TMA","124","18"
"BBB","2013B","14988","TMA","159","18"
"BBB","2013B","14989","TMA","187","18"
"BBB","2013B","14990","Exam","","100"
"BBB","2013J","15003","CMA","54","1"
"BBB","2013J","15004","CMA","96","1"
"BBB","2013J","15005","CMA","131","1"
"BBB","2013J","15006","CMA","166","1"
"BBB","2013J","15007","CMA","208","1"
"BBB","2013J","14996","TMA","19","5"
"BBB","2013J","14997","TMA","47","18"
"BBB","2013J","14998","TMA","96","18"
"BBB","2013J","14999","TMA","131","18"
"BBB","2013J","15000","TMA","166","18"
"BBB","2013J","15001","TMA","208","18"
"BBB","2013J","15002","Exam","","100"
"BBB","2014B","15015","CMA","47","1"
"BBB","2014B","15016","CMA","82","1"
"BBB","2014B","15017","CMA","117","1"
"BBB","2014B","15018","CMA","152","1"
"BBB","2014B","15019","CMA","194","1"
"BBB","2014B","15008","TMA","12","5"
"BBB","2014B","15009","TMA","40","18"
"BBB","2014B","15010","TMA","82","18"
"BBB","2014B","15011","TMA","117","18"
"BBB","2014B","15012","TMA","152","18"
"BBB","2014B","15013","TMA","194","18"
"BBB","2014B","15014","Exam","","100"
"BBB","2014J","15020","TMA","19","0"
"BBB","2014J","15021","TMA","54","10"
"BBB","2014J","15022","TMA","110","20"
"BBB","2014J","15023","TMA","152","35"
"BBB","2014J","15024","TMA","201","35"
"BBB","2014J","15025","Exam","","100"
"CCC","2014B","24286","CMA","18","2"
"CCC","2014B","24287","CMA","67","7"
"CCC","2014B","24288","CMA","137","8"
"CCC","2014B","24289","CMA","207","8"
"CCC","2014B","24282","TMA","32","9"
"CCC","2014B","24283","TMA","102","22"
"CCC","2014B","24284","TMA","151","22"
"CCC","2014B","24285","TMA","200","22"
"CCC","2014B","24290","Exam","","100"
"CCC","2014B","40087","Exam","","100"
"CCC","2014J","24295","CMA","18","2"
"CCC","2014J","24296","CMA","67","7"
"CCC","2014J","24297","CMA","144","8"
"CCC","2014J","24298","CMA","214","8"
"CCC","2014J","24291","TMA","32","9"
"CCC","2014J","24292","TMA","109","22"
"CCC","2014J","24293","TMA","158","22"
"CCC","2014J","24294","TMA","207","22"
"CCC","2014J","24299","Exam","","100"
"CCC","2014J","40088","Exam","","100"
"DDD","2013B","25341","CMA","23","2"
"DDD","2013B","25342","CMA","51","3"
"DDD","2013B","25343","CMA","79","3"
"DDD","2013B","25344","CMA","114","4"
"DDD","2013B","25345","CMA","149","4"
"DDD","2013B","25346","CMA","170","3"
"DDD","2013B","25347","CMA","206","6"
"DDD","2013B","25334","TMA","25","7.5"
"DDD","2013B","25335","TMA","53","10"
"DDD","2013B","25336","TMA","81","12.5"
"DDD","2013B","25337","TMA","116","15"
"DDD","2013B","25338","TMA","151","15"
"DDD","2013B","25339","TMA","200","15"
"DDD","2013B","25340","Exam","240","100"
"DDD","2013J","25348","TMA","25","10"
"DDD","2013J","25349","TMA","53","12.5"
"DDD","2013J","25350","TMA","88","17.5"
"DDD","2013J","25351","TMA","123","20"
"DDD","2013J","25352","TMA","165","20"
"DDD","2013J","25353","TMA","207","20"
"DDD","2013J","25354","Exam","261","100"
"DDD","2014B","25355","TMA","25","10"
"DDD","2014B","25356","TMA","53","12.5"
"DDD","2014B","25357","TMA","74","17.5"
"DDD","2014B","25358","TMA","116","20"
"DDD","2014B","25359","TMA","158","20"
"DDD","2014B","25360","TMA","200","20"
"DDD","2014B","25361","Exam","241","100"
"DDD","2014J","25362","TMA","20","5"
"DDD","2014J","25363","TMA","41","10"
"DDD","2014J","25364","TMA","62","10"
"DDD","2014J","25365","TMA","111","25"
"DDD","2014J","25366","TMA","146","25"
"DDD","2014J","25367","TMA","195","25"
"DDD","2014J","25368","Exam","","100"
"EEE","2013J","30709","TMA","33","16"
"EEE","2013J","30710","TMA","68","28"
"EEE","2013J","30711","TMA","124","28"
"EEE","2013J","30712","TMA","159","28"
"EEE","2013J","30713","Exam","235","100"
"EEE","2014B","30714","TMA","33","16"
"EEE","2014B","30715","TMA","68","28"
"EEE","2014B","30716","TMA","117","28"
"EEE","2014B","30717","TMA","152","28"
"EEE","2014B","30718","Exam","228","100"
"EEE","2014J","30719","TMA","33","16"
"EEE","2014J","30720","TMA","68","28"
"EEE","2014J","30721","TMA","131","28"
"EEE","2014J","30722","TMA","166","28"
"EEE","2014J","30723","Exam","235","100"
"FFF","2013B","34865","CMA","222","0"
"FFF","2013B","34866","CMA","222","0"
"FFF","2013B","34867","CMA","222","0"
"FFF","2013B","34868","CMA","222","0"
"FFF","2013B","34869","CMA","222","0"
"FFF","2013B","34871","CMA","222","0"
"FFF","2013B","34870","CMA","222","0"
"FFF","2013B","34860","TMA","19","12.5"
"FFF","2013B","34861","TMA","47","12.5"
"FFF","2013B","34862","TMA","89","25"
"FFF","2013B","34863","TMA","131","25"
"FFF","2013B","34864","TMA","166","25"
"FFF","2013B","34872","Exam","222","100"
"FFF","2013J","34878","CMA","236","0"
"FFF","2013J","34879","CMA","236","0"
"FFF","2013J","34880","CMA","236","0"
"FFF","2013J","34881","CMA","236","0"
"FFF","2013J","34882","CMA","236","0"
"FFF","2013J","34884","CMA","236","0"
"FFF","2013J","34883","CMA","236","0"
"FFF","2013J","34873","TMA","19","12.5"
"FFF","2013J","34874","TMA","47","12.5"
"FFF","2013J","34875","TMA","96","25"
"FFF","2013J","34876","TMA","131","25"
"FFF","2013J","34877","TMA","173","25"
"FFF","2013J","34885","Exam","236","100"
"FFF","2014B","34891","CMA","227","0"
"FFF","2014B","34892","CMA","227","0"
"FFF","2014B","34893","CMA","227","0"
"FFF","2014B","34894","CMA","227","0"
"FFF","2014B","34895","CMA","227","0"
"FFF","2014B","34897","CMA","227","0"
"FFF","2014B","34896","CMA","227","0"
"FFF","2014B","34886","TMA","24","12.5"
"FFF","2014B","34887","TMA","52","12.5"
"FFF","2014B","34888","TMA","87","25"
"FFF","2014B","34889","TMA","129","25"
"FFF","2014B","34890","TMA","171","25"
"FFF","2014B","34898","Exam","227","100"
"FFF","2014J","34904","CMA","241","0"
"FFF","2014J","34905","CMA","241","0"
"FFF","2014J","34906","CMA","241","0"
"FFF","2014J","34907","CMA","241","0"
"FFF","2014J","34908","CMA","241","0"
"FFF","2014J","34910","CMA","241","0"
"FFF","2014J","34909","CMA","241","0"
"FFF","2014J","34899","TMA","24","12.5"
"FFF","2014J","34900","TMA","52","12.5"
"FFF","2014J","34901","TMA","94","25"
"FFF","2014J","34902","TMA","136","25"
"FFF","2014J","34903","TMA","199","25"
"FFF","2014J","34911","Exam","241","100"
"GGG","2013J","37418","CMA","229","0"
"GGG","2013J","37419","CMA","229","0"
"GGG","2013J","37420","CMA","229","0"
"GGG","2013J","37421","CMA","229","0"
"GGG","2013J","37422","CMA","229","0"
"GGG","2013J","37423","CMA","229","0"
"GGG","2013J","37415","TMA","61","0"
"GGG","2013J","37416","TMA","124","0"
"GGG","2013J","37417","TMA","173","0"
"GGG","2013J","37424","Exam","229","100"
"GGG","2014B","37428","CMA","222","0"
"GGG","2014B","37429","CMA","222","0"
"GGG","2014B","37430","CMA","222","0"
"GGG","2014B","37431","CMA","222","0"
"GGG","2014B","37432","CMA","222","0"
"GGG","2014B","37433","CMA","222","0"
"GGG","2014B","37425","TMA","61","0"
"GGG","2014B","37426","TMA","117","0"
"GGG","2014B","37427","TMA","166","0"
"GGG","2014B","37434","Exam","222","100"
"GGG","2014J","37438","CMA","229","0"
"GGG","2014J","37439","CMA","229","0"
"GGG","2014J","37440","CMA","229","0"
"GGG","2014J","37441","CMA","229","0"
"GGG","2014J","37442","CMA","229","0"
"GGG","2014J","37443","CMA","229","0"
"GGG","2014J","37435","TMA","61","0"
"GGG","2014J","37436","TMA","124","0"
"GGG","2014J","37437","TMA","173","0"
"GGG","2014J","37444","Exam","229","100"
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
"code_module","code_presentation","module_presentation_length"
"AAA","2013J","268"
"AAA","2014J","269"
"BBB","2013J","268"
"BBB","2014J","262"
"BBB","2013B","240"
"BBB","2014B","234"
"CCC","2014J","269"
"CCC","2014B","241"
"DDD","2013J","261"
"DDD","2014J","262"
"DDD","2013B","240"
"DDD","2014B","241"
"EEE","2013J","268"
"EEE","2014J","269"
"EEE","2014B","241"
"FFF","2013J","268"
"FFF","2014J","269"
"FFF","2013B","240"
"FFF","2014B","241"
"GGG","2013J","261"
"GGG","2014J","269"
"GGG","2014B","241"
Loading