Skip to content

Commit

Permalink
feat: new llama model (#356)
Browse files Browse the repository at this point in the history
  • Loading branch information
David-Kristek authored May 20, 2024
1 parent b54f36d commit e8ecae9
Show file tree
Hide file tree
Showing 17 changed files with 163 additions and 160 deletions.
2 changes: 1 addition & 1 deletion examples/extensions/huggingface/huggingface_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def __call__(self):

agent = IBMGenAIAgent(
client=client,
model="meta-llama/llama-2-70b-chat",
model="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(min_new_tokens=10, max_new_tokens=200, random_seed=777, temperature=0),
additional_tools=[BitcoinPriceFetcher()],
)
Expand Down
2 changes: 1 addition & 1 deletion examples/extensions/langchain/langchain_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def _run(self, word: str, run_manager: Optional[CallbackManagerForToolRun] = Non
client = Client(credentials=Credentials.from_env())
llm = LangChainChatInterface(
client=client,
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(
max_new_tokens=250, min_new_tokens=20, temperature=0, stop_sequences=["\nObservation"]
),
Expand Down
2 changes: 1 addition & 1 deletion examples/extensions/langchain/langchain_chat_generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def heading(text: str) -> str:

llm = LangChainChatInterface(
client=Client(credentials=Credentials.from_env()),
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(
decoding_method=DecodingMethod.SAMPLE,
max_new_tokens=100,
Expand Down
2 changes: 1 addition & 1 deletion examples/extensions/langchain/langchain_chat_stream.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def heading(text: str) -> str:
print(heading("Stream chat with langchain"))

llm = LangChainChatInterface(
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
client=Client(credentials=Credentials.from_env()),
parameters=TextGenerationParameters(
decoding_method=DecodingMethod.SAMPLE,
Expand Down
2 changes: 1 addition & 1 deletion examples/extensions/langchain/langchain_sql_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def create_llm():
client = Client(credentials=Credentials.from_env())
return LangChainChatInterface(
client=client,
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(
max_new_tokens=250, min_new_tokens=20, temperature=0, stop_sequences=["\nObservation"]
),
Expand Down
2 changes: 1 addition & 1 deletion examples/extensions/llama_index/llama_index_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def heading(text: str) -> str:

llm = IBMGenAILlamaIndex(
client=client,
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(
decoding_method=DecodingMethod.SAMPLE,
max_new_tokens=100,
Expand Down
2 changes: 1 addition & 1 deletion examples/text/chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def heading(text: str) -> str:
)

client = Client(credentials=Credentials.from_env())
model_id = "meta-llama/llama-2-70b-chat"
model_id = "meta-llama/llama-3-70b-instruct"

prompt = "What is NLP and how it has evolved over the years?"
print(heading("Generating a chat response"))
Expand Down
2 changes: 1 addition & 1 deletion src/genai/extensions/langchain/chat_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ class LangChainChatInterface(BaseChatModel):
client = Client(credentials=Credentials.from_env())
llm = LangChainChatInterface(
client=client,
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(
max_new_tokens=250,
)
Expand Down
2 changes: 1 addition & 1 deletion src/genai/extensions/langchain/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ class LangChainInterface(LLM):
client = Client(credentials=Credentials.from_env())
llm = LangChainInterface(
client=client,
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
parameters=TextGenerationParameters(max_new_tokens=50)
)
Expand Down
4 changes: 2 additions & 2 deletions src/genai/text/chat/chat_generation_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ def create(
# Create a new conversation
response = client.text.chat.create(
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
messages=[HumanMessage(content="Describe the game Chess?")],
parameters=TextGenerationParameters(max_token_limit=100)
)
Expand Down Expand Up @@ -152,7 +152,7 @@ def create_stream(
# Create a new conversation
for response in client.text.chat.create_stream(
model_id="meta-llama/llama-2-70b-chat",
model_id="meta-llama/llama-3-70b-instruct",
messages=[HumanMessage(content="Describe the game Chess?")],
parameters=TextGenerationParameters(max_token_limit=100)
):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,22 +12,22 @@ interactions:
uri: https://api.com/v2/text/generation/limits?version=2023-11-22
response:
body:
string: '{"result":{"concurrency":{"limit":200,"remaining":200}}}'
string: '{"result":{"concurrency":{"limit":10,"remaining":10}}}'
headers:
cache-control:
- private
content-length:
- '56'
- '54'
content-type:
- application/json; charset=utf-8
content-version:
- '2023-11-22'
date:
- Wed, 20 Mar 2024 08:27:00 GMT
- Mon, 20 May 2024 14:12:17 GMT
keep-alive:
- timeout=72
set-cookie:
- 2eef5f4c257f6bca76e8da5586743beb=1e3545705d3737525c7629e9f28dc93d; path=/;
- 2eef5f4c257f6bca76e8da5586743beb=de04e502e3969a930842cae695f31f86; path=/;
HttpOnly; Secure; SameSite=None
vary:
- accept-encoding
Expand Down Expand Up @@ -75,47 +75,41 @@ interactions:
`src_lang`, which should be the language of the text to translate and `tgt_lang`,
which should be the language for the desired ouput language. Both `src_lang`
and `tgt_lang` are written in plain English, such as ''Romanian'', or ''Albanian''.
It returns the text translated in `tgt_lang`.\n- image_transformer: This is
a tool that transforms an image according to a prompt. It takes two inputs:
`image`, which should be the image to transform, and `prompt`, which should
be the prompt to use to change it. The prompt should only contain descriptive
adjectives, as if completing the prompt of the original image. It returns the
modified image.\n- text_downloader: This is a tool that downloads a file from
a `url`. It takes the `url` as input, and returns the text contained in the
file.\n- image_generator: This is a tool that creates an image according to
a prompt, which is a text description. It takes an input named `prompt` which
contains the image description and outputs an image.\n- video_generator: This
is a tool that creates a video according to a text description. It takes an
input named `prompt` which contains the image description, as well as an optional
input `seconds` which will be the duration of the video. The default is of two
seconds. The tool outputs a video object.\n\n\nTask: \"Answer the question in
the variable `question` about the image stored in the variable `image`. The
question is in French.\"\n\nI will use the following tools: `translator` to
translate the question into English and then `image_qa` to answer the question
on the input image.\n\nAnswer:\n```py\ntranslated_question = translator(question=question,
src_lang=\"French\", tgt_lang=\"English\")\nprint(f\"The translated question
is {translated_question}.\")\nanswer = image_qa(image=image, question=translated_question)\nprint(f\"The
answer is {answer}\")\n```\n\nTask: \"Identify the oldest person in the `document`
and create an image showcasing the result.\"\n\nI will use the following tools:
`document_qa` to find the oldest person in the document, then `image_generator`
to generate an image according to the answer.\n\nAnswer:\n```py\nanswer = document_qa(document,
question=\"What is the oldest person?\")\nprint(f\"The answer is {answer}.\")\nimage
= image_generator(answer)\n```\n\nTask: \"Generate an image using the text given
in the variable `caption`.\"\n\nI will use the following tool: `image_generator`
to generate an image.\n\nAnswer:\n```py\nimage = image_generator(prompt=caption)\n```\n\nTask:
\"Summarize the text given in the variable `text` and read it out loud.\"\n\nI
will use the following tools: `summarizer` to create a summary of the input
text, then `text_reader` to read it out loud.\n\nAnswer:\n```py\nsummarized_text
= summarizer(text)\nprint(f\"Summary: {summarized_text}\")\naudio_summary =
text_reader(summarized_text)\n```\n\nTask: \"Answer the question in the variable
`question` about the text in the variable `text`. Use the answer to generate
an image.\"\n\nI will use the following tools: `text_qa` to create the answer,
then `image_generator` to generate an image according to the answer.\n\nAnswer:\n```py\nanswer
= text_qa(text=text, question=question)\nprint(f\"The answer is {answer}.\")\nimage
= image_generator(answer)\n```\n\nTask: \"Caption the following `image`.\"\n\nI
will use the following tool: `image_captioner` to generate a caption for the
image.\n\nAnswer:\n```py\ncaption = image_captioner(image)\n```\n\nTask: \"Summarize
the chat\"\n\nI will use the following", "model_id": "meta-llama/llama-2-70b",
It returns the text translated in `tgt_lang`.\n- image_transformation: This
is a tool that transforms an image according to a prompt and returns the modified
image.\n- text_downloader: This is a tool that downloads a file from a `url`.
It takes the `url` as input, and returns the text contained in the file.\n-
image_generator: This is a tool that creates an image according to a prompt,
which is a text description.\n- video_generator: This is a tool that creates
a video according to a text description. It takes an optional input `seconds`
which will be the duration of the video. The default is of two seconds. The
tool outputs a video object.\n\n\nTask: \"Answer the question in the variable
`question` about the image stored in the variable `image`. The question is in
French.\"\n\nI will use the following tools: `translator` to translate the question
into English and then `image_qa` to answer the question on the input image.\n\nAnswer:\n```py\ntranslated_question
= translator(question=question, src_lang=\"French\", tgt_lang=\"English\")\nprint(f\"The
translated question is {translated_question}.\")\nanswer = image_qa(image=image,
question=translated_question)\nprint(f\"The answer is {answer}\")\n```\n\nTask:
\"Identify the oldest person in the `document` and create an image showcasing
the result.\"\n\nI will use the following tools: `document_qa` to find the oldest
person in the document, then `image_generator` to generate an image according
to the answer.\n\nAnswer:\n```py\nanswer = document_qa(document, question=\"What
is the oldest person?\")\nprint(f\"The answer is {answer}.\")\nimage = image_generator(answer)\n```\n\nTask:
\"Generate an image using the text given in the variable `caption`.\"\n\nI will
use the following tool: `image_generator` to generate an image.\n\nAnswer:\n```py\nimage
= image_generator(prompt=caption)\n```\n\nTask: \"Summarize the text given in
the variable `text` and read it out loud.\"\n\nI will use the following tools:
`summarizer` to create a summary of the input text, then `text_reader` to read
it out loud.\n\nAnswer:\n```py\nsummarized_text = summarizer(text)\nprint(f\"Summary:
{summarized_text}\")\naudio_summary = text_reader(summarized_text)\n```\n\nTask:
\"Answer the question in the variable `question` about the text in the variable
`text`. Use the answer to generate an image.\"\n\nI will use the following tools:
`text_qa` to create the answer, then `image_generator` to generate an image
according to the answer.\n\nAnswer:\n```py\nanswer = text_qa(text=text, question=question)\nprint(f\"The
answer is {answer}.\")\nimage = image_generator(answer)\n```\n\nTask: \"Caption
the following `image`.\"\n\nI will use the following tool: `image_captioner`
to generate a caption for the image.\n\nAnswer:\n```py\ncaption = image_captioner(image)\n```\n\nTask:
\"Summarize the chat\"\n\nI will use the following", "model_id": "meta-llama/llama-2-70b",
"parameters": {"max_new_tokens": 500, "stop_sequences": ["Task:"]}}'
headers:
accept:
Expand All @@ -125,30 +119,24 @@ interactions:
connection:
- keep-alive
content-length:
- '6535'
- '6135'
content-type:
- application/json
method: POST
uri: https://api.com/v2/text/generation?version=2024-03-19
response:
body:
string: '{"id":"230e435f-6c47-46bd-b0f2-ddc56c834dee","model_id":"meta-llama/llama-2-70b","created_at":"2024-03-20T08:27:06.828Z","results":[{"generated_text":"
tools: `document_qa` to identify the oldest person, then `image_captioner`
to generate a caption about that person, I will then generate an image from
that caption using `image_generator`, and finally `doc_to_text` and `text_reader`
to read the generated text. The list of tools will be executed one after the
other.\n\nAnswer:\n```py\nanswer = document_qa(document, question=\"What is
the oldest person?\")\ncaption = image_captions(answer)\nimage = image_generator(prompt=caption)\noutput
= summary_of_document(document)\n```\n\nTask:","generated_token_count":142,"input_token_count":1580,"stop_reason":"stop_sequence","stop_sequence":"Task:","seed":3264333442}]}'
string: '{"id":"22234f91-ef73-4721-9c85-04a22aad9296","model_id":"meta-llama/llama-2-70b","created_at":"2024-05-20T14:12:25.703Z","results":[{"generated_text":"
tool: `summarizer` to generate a summary of the chat.\n\nAnswer:\n```py\n))","generated_token_count":25,"input_token_count":1490,"stop_reason":"eos_token","seed":3150004800}]}'
headers:
content-length:
- '817'
- '327'
content-type:
- application/json; charset=utf-8
content-version:
- '2024-03-19'
date:
- Wed, 20 Mar 2024 08:27:06 GMT
- Mon, 20 May 2024 14:12:25 GMT
keep-alive:
- timeout=72
vary:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@ interactions:
explain why instead of answering something incorrectly.\n If you don''t know
the answer to a question, please don''t share false information.\n ", "role":
"system"}, {"content": "What is NLP and how it has evolved over the years?",
"role": "user"}], "model_id": "meta-llama/llama-2-70b-chat", "parameters": {}}'
"role": "user"}], "model_id": "meta-llama/llama-3-70b-instruct", "parameters":
{}}'
headers:
accept:
- '*/*'
Expand All @@ -17,28 +18,29 @@ interactions:
connection:
- keep-alive
content-length:
- '730'
- '734'
content-type:
- application/json
method: POST
uri: https://api.com/v2/text/chat?version=2024-03-19
response:
body:
string: '{"id":"1b962f25-87c0-4b96-9c77-739bd9f5b2f6","model_id":"meta-llama/llama-2-70b-chat","created_at":"2024-03-20T08:27:23.202Z","results":[{"generated_text":" NLP
(Natural Language Processing) refers to the branch of Artificial Intelligence","generated_token_count":20,"input_token_count":160,"stop_reason":"max_tokens","seed":683510637}],"conversation_id":"adc37c54-87cc-43ad-bf50-16013eec263f"}'
string: '{"id":"01f28b95-5ecd-4a01-9a2b-7803c6db824f","model_id":"meta-llama/llama-3-70b-instruct","created_at":"2024-05-20T14:12:28.750Z","results":[{"generated_text":"Natural
Language Processing (NLP) is a subfield of artificial intelligence (AI) that
deals with","generated_token_count":20,"input_token_count":134,"stop_reason":"max_tokens","seed":1025128500}],"conversation_id":"90edb70b-c4e7-45f5-81c3-fab231227b7a"}'
headers:
content-length:
- '395'
- '412'
content-type:
- application/json; charset=utf-8
content-version:
- '2024-03-19'
date:
- Wed, 20 Mar 2024 08:27:23 GMT
- Mon, 20 May 2024 14:12:28 GMT
keep-alive:
- timeout=72
set-cookie:
- 2eef5f4c257f6bca76e8da5586743beb=1e3545705d3737525c7629e9f28dc93d; path=/;
- 2eef5f4c257f6bca76e8da5586743beb=fad6ffcbebbca45726eaa14ee11d2c44; path=/;
HttpOnly; Secure; SameSite=None
vary:
- accept-encoding
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@ interactions:
explain why instead of answering something incorrectly.\n If you don''t know
the answer to a question, please don''t share false information.\n ", "role":
"system"}, {"content": "What is NLP and how it has evolved over the years?",
"role": "user"}], "model_id": "meta-llama/llama-2-70b-chat", "parameters": {}}'
"role": "user"}], "model_id": "meta-llama/llama-3-70b-instruct", "parameters":
{}}'
headers:
accept:
- '*/*'
Expand All @@ -17,29 +18,29 @@ interactions:
connection:
- keep-alive
content-length:
- '730'
- '734'
content-type:
- application/json
method: POST
uri: https://api.com/v2/text/chat?version=2024-03-19
response:
body:
string: '{"id":"fb9c6250-62c1-412e-beb3-e8db76569817","model_id":"meta-llama/llama-2-70b-chat","created_at":"2024-03-20T08:27:17.855Z","results":[{"generated_text":" NLP,
or Natural Language Processing, is a subfield of artificial intelligence that
deals","generated_token_count":20,"input_token_count":160,"stop_reason":"max_tokens","seed":3913660195}],"conversation_id":"a8512cf7-652f-42cc-9471-ff4996aecef9"}'
string: '{"id":"d8160c0f-36a3-49a0-b001-a3f9cbdb9643","model_id":"meta-llama/llama-3-70b-instruct","created_at":"2024-05-20T14:12:27.354Z","results":[{"generated_text":"NLP,
or Natural Language Processing, is a subfield of artificial intelligence (AI)
that deals","generated_token_count":20,"input_token_count":134,"stop_reason":"max_tokens","seed":2032949123}],"conversation_id":"bcc5d917-5e64-48e0-9047-ac5e032e8f21"}'
headers:
content-length:
- '403'
- '410'
content-type:
- application/json; charset=utf-8
content-version:
- '2024-03-19'
date:
- Wed, 20 Mar 2024 08:27:17 GMT
- Mon, 20 May 2024 14:12:27 GMT
keep-alive:
- timeout=72
set-cookie:
- 2eef5f4c257f6bca76e8da5586743beb=c7a0964ef13502a09f12e4a9f37d8d7f; path=/;
- 2eef5f4c257f6bca76e8da5586743beb=fad6ffcbebbca45726eaa14ee11d2c44; path=/;
HttpOnly; Secure; SameSite=None
vary:
- accept-encoding
Expand Down
2 changes: 1 addition & 1 deletion tests/integration/extensions/test_langchain_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
@pytest.mark.integration
class TestLangChainChat:
def setup_method(self):
self.model_id = "meta-llama/llama-2-70b-chat"
self.model_id = "meta-llama/llama-3-70b-instruct"

@pytest.fixture
def parameters(self):
Expand Down
Loading

0 comments on commit e8ecae9

Please sign in to comment.