Run inference for multi-face detection using Kornia based one the YuNet model.The model implementation is based on Pytorch framework.
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add face detection algorithm
detector = wf.add_task(name="infer_face_detection_kornia", auto_connect=True)
# Run the workflow on imageontent.com/Ikomia-hub/infer_face_detection_kornia/main/images/people.jpg")
# Display result
display(detector.get_image_with_graphics(), title="Kornia face detector")
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add face detection algorithm
detector = wf.add_task(name="infer_face_detection_kornia", auto_connect=True)
detector.set_parameters({
"conf_thres": "0.6",
"cuda": "True",
})
# Run the workflow on image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_face_detection_kornia/main/images/people.jpg")
# Display result
display(detector.get_image_with_graphics(), title="Kornia face detector")
- conf_thresh (float, default="0.6"): object detection confidence.
- cuda (bool, default=True): CUDA acceleration if True, run on CPU otherwise.
Note: parameter key and value should be in string format when added to the dictionary.
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add face detection algorithm
detector = wf.add_task(name="infer_face_detection_kornia", auto_connect=True)
# Run the workflow on image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_face_detection_kornia/main/images/people.jpg")
# Iterate over outputs
for output in detector.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()
Kornia face detection algorithm generates 2 outputs:
- Forwaded original image (CImageIO)
- Objects detection output (CObjectDetectionIO)