The Pytorch code for our following paper
RomniStereo: Recurrent Omnidirectional Stereo Matching, RA-L 2024 (pdf)
Hualie Jiang, Rui Xu, Minglang Tan and Wenjie Jiang [Insta360]
Create the environment
conda create -n romnistereo python=3.8
Install pytorch
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=10.2 -c pytorch # for cuda 10
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch # for cuda 11
Then install other requirements
pip install -r requirements.txt
Please download the datasets from dataset link and use download.sh for processing.
python train.py --name romnistereoC --dbname omnithings --base_channel C --mixed_precision --total_epochs 30
# C can be 4, 8, 32, 64
python train.py --name romnistereoC_ft --dbname omnihouse sunny --base_channel C --mixed_precision --total_epochs 16 --pretrain_ckpt checkpoints/romnistereoC/romnistereoC_e29.pth
# C can be 4, 8, 32, 64
The pretrained models of our paper is available on Google Drive.
python eval.py --dbname omnithings/omnihouse/sunny/cloudy/sunet --restore_ckpt models/romnistereoC[_ft].pth --save_result
# C can be 4, 8, 32, 64
python test.py --dbname itbt_sample/real_indoor_sample --restore_ckpt models/romnistereoC[_ft].pth --vis --save_result
# C can be 4, 8, 32, 64
The project borrows codes from OmniMVS and RAFT-Stereo. Many thanks to their authors.
Please cite our paper if you find our work useful in your research.
@inproceedings{jiang2024romnistereo,
title={RomniStereo: Recurrent Omnidirectional Stereo Matching},
author={Jiang, Hualie and Xu, Rui and Tan, Minglang and Jiang, Wenjie},
booktitle={IEEE Robotics and Automation Letters},
year={2024}
}