Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Configs] Add internlm2_20b_full_custom_pretrain_e1_32k_sp2 cfg #627

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""Data format:

[
{
"text": "xxx"
},
{
"text": "xxx"
},
...
]
Please refer to https://xtuner.readthedocs.io/zh-cn/docs/training/custom_pretrain_dataset.html
for more details.

Speed: 16 * A100 80G, DeepSpeed ZeRO-3, 1324 tokens per second per GPU
""" # noqa: E501

from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import pretrain_map_fn
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
ThroughputHook,
VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler

#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'internlm/internlm2-20b'
use_varlen_attn = True

# Data
data_files = ['/path/to/json/file.json']
max_length = 32768
pack_to_max_length = True

# parallel
sequence_parallel_size = 2

# Scheduler & Optimizer
# batch size per device, set to 1 if `use_varlen_attn` = True
# To clarify, enlarging the batch size essentially enlarges the `max_length`.
# For example, doubling the max length is tantamount to doubling the batch size
batch_size = 1 # per_device
accumulative_counts = 4 # 1bs * 4acc * 16gpu = 64 batchsize
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
lr = 4e-5
betas = (0.9, 0.95)
weight_decay = 0.01
max_norm = 1 # grad clip
warm_up_ratio = 0.025

# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)

# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = ''
evaluation_inputs = ['上海是', 'Shanghai is']

#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')

model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True))

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=data_files),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=pretrain_map_fn,
template_map_fn=None,
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)

sampler = SequenceParallelSampler \
if sequence_parallel_size > 1 else DefaultSampler

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=sampler, shuffle=True),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1 / 40,
by_epoch=True,
begin=0,
end=warm_up_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=lr * 0.15,
by_epoch=True,
begin=warm_up_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM),
dict(type=ThroughputHook)
]

if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 1 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=1),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False, window_size=1)
Loading