Skip to content

Commit

Permalink
[Kernel] optimize moe_align_block_size for cuda graph and large num_e…
Browse files Browse the repository at this point in the history
…xperts (e.g. DeepSeek-V3) (vllm-project#12222)

Signed-off-by: Jinzhen Lin <[email protected]>
Co-authored-by: Michael Goin <[email protected]>
Co-authored-by: Tyler Michael Smith <[email protected]>
Signed-off-by: Isotr0py <[email protected]>
  • Loading branch information
3 people authored and Isotr0py committed Feb 2, 2025
1 parent 0b28cf2 commit 60b36d7
Show file tree
Hide file tree
Showing 2 changed files with 58 additions and 37 deletions.
93 changes: 57 additions & 36 deletions csrc/moe/moe_align_sum_kernels.cu
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ __device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
}
} // namespace

template <typename scalar_t>
template <typename scalar_t, typename token_cnts_t>
__global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
int32_t* sorted_token_ids,
int32_t* expert_ids,
Expand All @@ -32,12 +32,8 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
const size_t start_idx = threadIdx.x * tokens_per_thread;

extern __shared__ int32_t shared_mem[];

int32_t* tokens_cnts =
shared_mem; // 2d tensor with shape (blockDim.x + 1, num_experts)
int32_t* cumsum =
shared_mem +
(blockDim.x + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
int32_t* cumsum = shared_mem; // 1d tensor with shape (num_experts + 1)
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + blockDim.x + 1);

for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
Expand Down Expand Up @@ -74,7 +70,7 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
block_size) *
block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
*total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
}

__syncthreads();
Expand Down Expand Up @@ -224,26 +220,44 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();

// If we have very large number of experts, we can no longer use shared
// memory.
// TODO(simon): the right solution should be calculating the exact right
// amount of shared memory and use that. The num_experts >= 256 is just a
// temporary solution to unblock Deepseek V3.
if (num_experts >= 256) {
int device_max_shared_mem;
auto dev = topk_ids.get_device();
cudaDeviceGetAttribute(&device_max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);

const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem_i32 =
((num_thread + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
const int32_t shared_mem_i16 =
((num_thread + 1) * num_experts) * sizeof(uint16_t) +
(num_experts + 1) * sizeof(int32_t);

bool use_global_memory = false;
bool use_i16 = false; // Use uint16_t for shared memory token counts
if (shared_mem_i16 > device_max_shared_mem) {
use_global_memory = true;
} else if (shared_mem_i32 > device_max_shared_mem &&
topk_ids.numel() <= 65535) {
// when nelements of topk_ids is smaller than 65535 (max value of uint16),
// element value of token_cnts would also smaller than 65535,
// so we can use uint16 as dtype of token_cnts
use_i16 = true;
}

if (use_global_memory) {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);

const int32_t mem_tokens_cnts =
((num_experts + 1) * num_experts) * sizeof(int32_t);
const int32_t mem_cumsum = (num_experts + 1) * sizeof(int32_t);
// allocate global memory
int32_t* tokens_cnts;
int32_t* cumsum;
cudaMalloc(&tokens_cnts, mem_tokens_cnts);
cudaMalloc(&cumsum, mem_cumsum);
auto options_int = torch::TensorOptions()
.dtype(torch::kInt)
.device(topk_ids.device());
torch::Tensor token_cnts_buffer =
torch::empty({(num_experts + 1) * num_experts}, options_int);
torch::Tensor cumsum_buffer =
torch::empty({num_experts + 1}, options_int);

auto kernel =
vllm::moe::moe_align_block_size_global_mem_kernel<scalar_t>;
Expand All @@ -252,25 +266,32 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), tokens_cnts, cumsum);
cudaFree(tokens_cnts);
cudaFree(cumsum);
topk_ids.numel(), token_cnts_buffer.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>());
});
} else {
} else if (use_i16) {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem =
((num_thread + 1) * num_experts + (num_experts + 1)) *
sizeof(int32_t);

// set dynamic shared mem
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
auto kernel =
vllm::moe::moe_align_block_size_kernel<scalar_t, uint16_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem_i16));
kernel<<<1, num_thread, shared_mem_i16, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
});
} else {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
auto kernel =
vllm::moe::moe_align_block_size_kernel<scalar_t, int32_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<1, num_thread, shared_mem, stream>>>(
(void*)kernel, shared_mem_i32));
kernel<<<1, num_thread, shared_mem_i32, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
Expand Down
2 changes: 1 addition & 1 deletion vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -607,7 +607,7 @@ def _verify_cuda_graph(self) -> None:
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
self.max_model_len)

MODEL_NOT_SUPPORT_CUDA_GRAPH = ['deepseek_v3', 'mllama']
MODEL_NOT_SUPPORT_CUDA_GRAPH = ['mllama']
if (self.hf_config.model_type in MODEL_NOT_SUPPORT_CUDA_GRAPH
and not self.enforce_eager):
logger.warning(
Expand Down

0 comments on commit 60b36d7

Please sign in to comment.