Skip to content

Jgfrausing/basecaller-p10

Repository files navigation

Install JKBC

  1. Cd into the repository folder: cd basecaller-p10
  2. Create a conda environment from the conda_env.yml file in the repo:
    • Create a new conda environment using the conda_env.yml file: conda env create -f conda_env.yml (this will take a while)
  3. Activate the conda environment: conda activate jkbc
  4. Install the JKBC library locally using pip: $CONDA_PREFIX/bin/pip install -e jkbc

Making predictions

  1. Activate the conda environment if not active: conda activate jkbc
  2. cd into basecaller: cd nbs/basecaller
  3. Run the prediction script python predict.py <id> <data_set> <name_of_run>
  • Any id from https://app.wandb.ai/jkbc/jk-basecalling-v2 can be used, however the models presented in the report are:
    • JKBC-1: 2eiadj4y
    • JKBC-2: 1ywu3vo9
    • JKBC-3: 2d84exku
    • JKBC-4: j6f2sn3v
    • JKBC-5: 1c2vr2my
  • A small test set is include in nbs/basecaller/test-data/
  • To predict using JKBC-5 use the command: python predict.py 1c2vr2my test-data
  • This creates the folder 1c2vr2my-test-data/ containing reference.fasta and predictions.fasta.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •