- Cd into the repository folder:
cd basecaller-p10
- Create a conda environment from the conda_env.yml file in the repo:
- Create a new conda environment using the conda_env.yml file:
conda env create -f conda_env.yml
(this will take a while)
- Create a new conda environment using the conda_env.yml file:
- Activate the conda environment:
conda activate jkbc
- Install the JKBC library locally using pip:
$CONDA_PREFIX/bin/pip install -e jkbc
- Activate the conda environment if not active:
conda activate jkbc
- cd into basecaller:
cd nbs/basecaller
- Run the prediction script
python predict.py <id> <data_set> <name_of_run>
- Any id from https://app.wandb.ai/jkbc/jk-basecalling-v2 can be used, however the models presented in the report are:
- JKBC-1: 2eiadj4y
- JKBC-2: 1ywu3vo9
- JKBC-3: 2d84exku
- JKBC-4: j6f2sn3v
- JKBC-5: 1c2vr2my
- A small test set is include in nbs/basecaller/test-data/
- To predict using JKBC-5 use the command:
python predict.py 1c2vr2my test-data
- This creates the folder 1c2vr2my-test-data/ containing reference.fasta and predictions.fasta.