Skip to content

JiahuiChen-GitHub/S2TAT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

$S^2TAT$

Synchronous Spatio-Temporal Graph Transformer: A New Framework for Traffic Data Prediction

[Paper]

Installation

Tensorflow > 2.0

This repo was tested with Ubuntu 18.04.1 LTS, Python 3.8, tensorflow 2.5.0, and CUDA 11. But it should be runnable with recent tensoflow versions > 2.0

Data Preparation

The dataset is PEMS data for traffic prediction. Download and extract them under S2TAT/data, and make them look like this:

S2TAT/
  ├──data/
    ├──PEMS03/
    ├──PEMS04/
    ├──PEMS07/
    ├──PeMSD7L/
    └──PeMSD7M/
  ├──main.py
  ├──Model.py
  ├──Layers.py
  ├──utils.py
  └── ...

Usage

cd S2TAT
python main.py --config $config_path$

Results

The results of our $S^2TAT$ is tabulated as below

Dataset MAE MAPE(%) MSE #Parameters(M)
PEMS03 15.12 15.38 25.98 3.2
PEMS04 19.08 12.58 30.79 2.9
PEMS07 21.06 8.72 34.02 6.8
PEMS08 15.41 9.85 24.36 2.0
PeMSD7M 2.67 6.61 5.41 2.4
PeMSD7L 2.85 7.25 5.83 7.7

For any questions, please contact Jiahui Chen ([email protected]).

Citation

If you find this repo useful for your research, please consider citing the paper

@article{wang2022synchronous,
  title={Synchronous Spatiotemporal Graph Transformer: A New Framework for Traffic Data Prediction},
  author={Wang, Tian and Chen, Jiahui and L{\"u}, Jinhu and Liu, Kexin and Zhu, Aichun and Snoussi, Hichem and Zhang, Baochang},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2022},
  publisher={IEEE}
}

About

Synchronous Spatio-Temporal Graph Transformer

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages