The code and dataset for our paper in the CIKM2019:Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction [arXiv version]
This is the code for the CIKM-2019 Paper: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction. We have implemented our methods in Tensorflow.
Then you can run the file NGNN/main_score.py
to train the model.
You can change parameters according to the usage in NGNN/Config.py
:
parameters arguments in `NGNN/Config.py`:
epoch_num the max epoch number
train_batch_size training batch size
valid_batch_size validation batch size
hidden_size hidden size of the NGNN
lstm_forget_bias forget bias in NGNN update
max_grad_norm the gradient clip during train
init_scale the scale of initialize parameter 0.05
learning_rate learning rate 0.01 # 0.001 # 0.2
decay the decay of 0.5
decay_when = 0.002 # AUC
decay_epoch = 200
sgd_opt train strategy can choose: 'RMSProp', 'Adam', 'Momentum', 'RMSProp', 'Adadelta'
beta the weight of regulartion
GNN_step the number of step of GNN
dropout_prob the dropout probability of our model
adagrad_eps eps
gpu = 0 the gpu id
- Python 2.7
- Tensorflow 1.5.0
Please cite our paper if you use the code:
@article{li2019fi,
title={Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction},
author={Li, Zekun and Cui, Zeyu and Wu, Shu and Zhang, Xiaoyu and Wang, Liang},
journal={arXiv preprint arXiv:1910.05552},
year={2019}
}