Skip to content
This repository has been archived by the owner on Apr 7, 2022. It is now read-only.

For a 1.1.3 release #14

Merged
merged 5 commits into from
Dec 28, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,11 @@ jobs:
matrix:
julia-version:
- "1.0"
- "1.6"
- "1"
- "nightly"
os:
- ubuntu-latest
- macos-latest
- windows-latest
julia-arch:
- x64
steps:
Expand Down
9 changes: 4 additions & 5 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "MLJSerialization"
uuid = "17bed46d-0ab5-4cd4-b792-a5c4b8547c6d"
authors = ["Anthony D. Blaom <[email protected]>"]
version = "1.1.2"
version = "1.1.3"

[deps]
IterationControl = "b3c1a2ee-3fec-4384-bf48-272ea71de57c"
Expand All @@ -10,21 +10,20 @@ MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea"

[compat]
IterationControl = "0.4"
IterationControl = "0.4,0.5"
JLSO = "2.1"
MLJBase = "0.18"
MLJBase = "0.18,0.19"
MLJModelInterface = "0.4, 1.0"
julia = "1"

[extras]
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
DecisionTree = "7806a523-6efd-50cb-b5f6-3fa6f1930dbb"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
MLJScientificTypes = "2e2323e0-db8b-457b-ae0d-bdfb3bc63afd"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["CategoricalArrays", "DecisionTree", "Distributions", "MLJScientificTypes", "Random", "StableRNGs", "Statistics", "Test"]
test = ["CategoricalArrays", "DecisionTree", "Distributions", "Random", "StableRNGs", "Statistics", "Test"]
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| Linux | Coverage |
| :-----------: | :------: |
| [![Build status](https://github.com/JuliaAI/MLJSerialization.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJSerialization.jl/actions)| [![codecov.io](http://codecov.io/github/JuliaAI/MLJSerialization.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJSerialization.jl?branch=master) |
| [![Build status](https://github.com/JuliaAI/MLJSerialization.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJSerialization.jl/actions)| [![codecov.io](http://codecov.io/github/JuliaAI/MLJSerialization.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJSerialization.jl?branch=dev) |

A package adding model serialization to the
[MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) machine
Expand Down
4 changes: 2 additions & 2 deletions test/_dummy_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -149,9 +149,9 @@ MMI.training_losses(::DummyIterativeModel, report) = report.training_losses

MMI.supports_training_losses(::Type{<:DummyIterativeModel}) = true
MMI.input_scitype(::Type{<:DummyIterativeModel}) =
AbstractVector{<:MMI.ScientificTypes.Finite}
AbstractVector{<:MMI.ScientificTypesBase.Finite}
MMI.target_scitype(::Type{<:DummyIterativeModel}) =
AbstractVector{<:MMI.ScientificTypes.Continuous}
AbstractVector{<:MMI.ScientificTypesBase.Continuous}


# # FOR SYTHESIZING DATA FOR USE WITH DUMMY MODEL
Expand Down
10 changes: 4 additions & 6 deletions test/_models/DecisionTree.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,6 @@ export DecisionTreeClassifier, DecisionTreeRegressor
import MLJBase
import MLJBase: @mlj_model, metadata_pkg, metadata_model

using MLJScientificTypes

using CategoricalArrays

import DecisionTree
Expand Down Expand Up @@ -207,13 +205,13 @@ metadata_pkg.((DecisionTreeClassifier, DecisionTreeRegressor),
is_wrapper=false)

metadata_model(DecisionTreeClassifier,
input=MLJBase.Table(Continuous, Count, OrderedFactor),
target=AbstractVector{<:MLJBase.Finite},
input=MLJModelInterface.Table(Continuous, Count, OrderedFactor),
target=AbstractVector{<:MLJModelInterface.Finite},
weights=false,
descr=DTC_DESCR)

metadata_model(DecisionTreeRegressor,
input=MLJBase.Table(Continuous, Count, OrderedFactor),
target=AbstractVector{MLJBase.Continuous},
input=MLJModelInterface.Table(Continuous, Count, OrderedFactor),
target=AbstractVector{MLJModelInterface.Continuous},
weights=false,
descr=DTR_DESCR)