Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LinearStretching enhancements #28

Merged
merged 14 commits into from
Mar 27, 2020
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ImageContrastAdjustment"
uuid = "f332f351-ec65-5f6a-b3d1-319c6670881a"
authors = ["Dr. Zygmunt L. Szpak <[email protected]>"]
version = "0.3.4"
version = "0.3.5"

[deps]
ColorVectorSpace = "c3611d14-8923-5661-9e6a-0046d554d3a4"
Expand Down
4 changes: 0 additions & 4 deletions src/algorithms/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,3 @@ function cdf2pdf!(pdf::AbstractArray, cdf::AbstractArray)
pdf[i] = cdf[i] - cdf[i-1]
end
end

function linear_stretch(x, A, B, a, b)
return (x-A) * ((b-a)/(B-A)) + a
end
127 changes: 109 additions & 18 deletions src/algorithms/linear_stretching.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,17 @@
"""
```
LinearStretching <: AbstractHistogramAdjustmentAlgorithm
LinearStretching(; minval = 0, maxval = 1)
LinearStretching(; [src_minval], [src_maxval], dest_minval = 0, dest_maxval = 1)

LinearStretching((src_minval, src_maxval) => (dest_minval, dest_maxval))
LinearStretching((src_minval, src_maxval))
johnnychen94 marked this conversation as resolved.
Show resolved Hide resolved
LinearStretching(nothing => (dest_minval, dest_maxval))

adjust_histogram([T,] img, f::LinearStretching)
adjust_histogram!([out,] img, f::LinearStretching)
```

Returns an image where the range of the intensities spans the interval [`minval`, `maxval`].
Returns an image where the range of the intensities spans the interval [`dest_minval`, `dest_maxval`].
johnnychen94 marked this conversation as resolved.
Show resolved Hide resolved

# Details

Expand Down Expand Up @@ -39,44 +43,131 @@ channel are stretched to the specified range. The modified Y channel is then
combined with the I and Q channels and the resulting image converted to the same
type as the input.

## Choices for `minval` and `maxval`
## Choices for `dest_minval` and `dest_maxval`

If dest_minval and dest_maxval are specified then intensities are mapped to the range
[`dest_minval`, `dest_maxval`]. The default values are 0 and 1.

If minval and maxval are specified then intensities are mapped to the range
[`minval`, `maxval`]. The default values are 0 and 1.
## Choices for `src_minval` and `src_maxval`

`src_minval` and `src_maxval` specifies the intensity range of input image. By default,
the values are `extrema(img)` (finite). If custom values are provided, the output
intensity value will be clamped to range `(dest_minval, dest_maxval)` if it exceeds that.

# Example

```julia
using ImageContrastAdjustment, ImageView, TestImages
using ImageContrastAdjustment, TestImages

img = testimage("mandril_gray")
johnnychen94 marked this conversation as resolved.
Show resolved Hide resolved
imgo = adjust_histogram(img, LinearStretching(minval = 0, maxval = 1))
imgo = adjust_histogram(img, LinearStretching(nothing=>(0, 1)))

```

# References
1. W. Burger and M. J. Burge. *Digital Image Processing*. Texts in Computer Science, 2016. [doi:10.1007/978-1-4471-6684-9](https://doi.org/10.1007/978-1-4471-6684-9)

"""
@with_kw struct LinearStretching{T₁ <: Union{Real,AbstractGray},
T₂ <: Union{Real,AbstractGray}} <: AbstractHistogramAdjustmentAlgorithm
minval::T₁ = 0.0
maxval::T₂ = 1.0
@with_kw struct LinearStretching{T} <: AbstractHistogramAdjustmentAlgorithm
src_minval::T = nothing
src_maxval::T = nothing
dest_minval::T = 0.0f0
dest_maxval::T = 1.0f0
minval::T = nothing
maxval::T = nothing
function LinearStretching(src_minval::T1,
src_maxval::T2,
dest_minval::T3,
dest_maxval::T4,
minval::T5=nothing,
maxval::T6=nothing) where {T1 <: Union{Nothing,Real,AbstractGray},
T2 <: Union{Nothing,Real,AbstractGray},
T3 <: Union{Nothing,Real,AbstractGray},
T4 <: Union{Nothing,Real,AbstractGray},
T5 <: Union{Nothing,Real,AbstractGray},
T6 <: Union{Nothing,Real,AbstractGray}}
# in order to deprecate old fields we have to introduce new fields if we still want to use @with_kw
# https://github.com/JuliaImages/ImageContrastAdjustment.jl/pull/28#discussion_r395751301
if !isnothing(minval)
dest_minval = minval
Base.depwarn("deprecated: use `dest_minval` for keyword `minval`", :LinearStretching)
end
if !isnothing(maxval)
dest_maxval = maxval
Base.depwarn("deprecated: use `dest_maxval` for keyword `maxval`", :LinearStretching)
end

dest_minval <= dest_maxval || throw(ArgumentError("dest_minval $dest_minval should be less than dest_maxval $dest_maxval"))
if !(isnothing(src_minval) || isnothing(src_maxval))
src_minval <= src_maxval || throw(ArgumentError("src_minval $src_minval should be less than src_maxval $src_maxval"))
end
T = promote_type(T1, T2, T3, T4, T5, T6)
new{T}(convert(T, src_minval), convert(T, src_maxval),
convert(T, dest_minval), convert(T, dest_maxval),
convert(T, dest_minval), convert(T, dest_maxval))
end
end
function LinearStretching(rangemap::Pair{Tuple{T1, T2}, Tuple{T3, T4}}) where {T1, T2, T3, T4}
LinearStretching(rangemap.first..., rangemap.second...)
end
function LinearStretching(rangemap::Pair{Nothing, Tuple{T3, T4}}) where {T3, T4}
LinearStretching(nothing, nothing, rangemap.second...)
end
function LinearStretching(src_range::Tuple{T1, T2}) where {T1, T2}
LinearStretching(src_minval=src_range[1], src_maxval=src_range[2])
end

function (f::LinearStretching)(out::GenericGrayImage, img::GenericGrayImage)
src_minval = minfinite(img)
src_maxval = maxfinite(img)
img_min, img_max = minfinite(img), maxfinite(img)
src_minval = isnothing(f.src_minval) ? img_min : f.src_minval
src_maxval = isnothing(f.src_maxval) ? img_max : f.src_maxval
dest_minval = f.dest_minval
dest_maxval = f.dest_maxval
T = eltype(out)
out .= img
map!(out,out) do val

# the kernel operation `r * x - o` is equivalent to `(x-A) * ((b-a)/(B-A)) + a`
# precalculate these and make inner loop contains only multiplication and addition
# to get better performance
r = convert(floattype(T), (dest_maxval - dest_minval) / (src_maxval - src_minval))
o = convert(floattype(T), (src_minval*dest_maxval - src_maxval*dest_minval) / (src_maxval - src_minval))

if 1 ≈ r && 0 ≈ o
# when image intensity is already adjusted, there's no need to do it again
# it's a trivial but common case in practice
out === img || (out .= img)
return out
end

# In most cases, we don't need to clamp the output
# this is only used when user specifies custom `(src_minval, src_maxval)`
out_minval = r * img_min - o
out_maxval = r * img_max - o
do_clamp = (out_minval < dest_minval) || (out_maxval > dest_maxval)

# strip the colorant type to hit faster clamp version
dest_minval = convert(floattype(eltype(typeof(out_minval))), dest_minval)
dest_maxval = convert(floattype(eltype(typeof(out_maxval))), dest_maxval)

# tweak the performance of FixedPoint by fusing operations into one broadcast
# for Float32 the fallback implementation is faster
if eltype(T) <: FixedPoint
# ?: is faster than if-else
@. out = do_clamp ? clamp(r * img - o, dest_minval, dest_maxval) : r * img - o
return out
end

# fallback implementation
@inbounds @simd for p in eachindex(img)
val = img[p]
if isnan(val)
return val
out[p] = val
else
newval = linear_stretch(val, src_minval, src_maxval, f.minval, f.maxval)
return T <: Integer ? round(Int, newval ) : newval
newval = r * val - o
do_clamp && (newval = clamp(newval, dest_minval, dest_maxval))
out[p] = T <: Integer ? round(Int, newval) : newval
johnnychen94 marked this conversation as resolved.
Show resolved Hide resolved
end
end
out
end

function (f::LinearStretching)(out::AbstractArray{<:Color3}, img::AbstractArray{<:Color3})
Expand Down
33 changes: 27 additions & 6 deletions test/linear_stretching.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,14 @@
@testset "Linear Stretching" begin

@test LinearStretching() === LinearStretching(nothing, nothing, 0.0f0, 1.0f0)
@test LinearStretching(src_minval=0.1f0, src_maxval=0.9f0, dest_minval=0.0f0, dest_maxval=1.0f0) ===
LinearStretching(0.1f0, 0.9f0, 0.0f0, 1.0f0)
@test LinearStretching((0.1f0, 0.9f0)=>(0.2f0, 0.8f0)) === LinearStretching(0.1f0, 0.9f0, 0.2f0, 0.8f0)
@test LinearStretching(nothing=>(0.2f0, 0.8f0)) === LinearStretching((nothing, nothing)=>(0.2f0, 0.8f0))
@test LinearStretching((0.1f0, 0.9f0)) === LinearStretching(0.1f0, 0.9f0, 0.0f0, 1.0f0)
@test_throws MethodError LinearStretching(0.1f0, 0.9f0)
@test_throws MethodError LinearStretching((0.1f0, 0.9f0), (0.0f0, 1.0f0))

for T in (Gray{N0f8}, Gray{N0f16}, Gray{Float32}, Gray{Float64})
#=
Stretching an image consisting of a linear ramp should not change the image
Expand All @@ -9,7 +18,7 @@
img = T.(collect(reshape(1/100:1/100:1, 10, 10)))
minval = minimum(img)
maxval = maximum(img)
ret = adjust_histogram(img, LinearStretching(minval = minval, maxval = maxval))
ret = adjust_histogram(img, LinearStretching(nothing=>(minval, maxval)))
if T <: Gray{Float32} || T <: Gray{Float64}
@test all(map((i, r) -> isapprox(i, r), img, ret))
else
Expand All @@ -19,7 +28,7 @@
# Verify that NaN is also handled correctly.
if T <: Gray{Float32} || T <: Gray{Float64}
img[10] = NaN
ret = adjust_histogram(img, LinearStretching(minval = minval, maxval = maxval))
ret = adjust_histogram(img, LinearStretching(nothing=>(minval, maxval)))
@test isapprox(first(img), first(ret))
@test isapprox(last(img), last(ret))
@test isnan(ret[10])
Expand All @@ -29,23 +38,29 @@
img = T.(collect(reshape(1/100:1/100:1, 10, 10)))
minval = minimum(img)
maxval = maximum(img)
ret = adjust_histogram(img, LinearStretching(minval = 0, maxval = 1))
ret = adjust_histogram(img, LinearStretching(nothing=>(0, 1)))
@test isapprox(0, first(ret))
@test isapprox(1, last(ret))
@test isapprox(0, minimum(ret[.!isnan.(ret)]))
@test isapprox(1, maximum(ret[.!isnan.(ret)]))

# Verify that the return type matches the input type.
img = T.(testimage("mandril_gray"))
ret = adjust_histogram(img, LinearStretching(minval = 0, maxval = 1))
ret = adjust_histogram(img, LinearStretching(nothing=>(0, 1)))
@test eltype(ret) == eltype(img)
@test isapprox(0, minimum(ret))
@test isapprox(1, maximum(ret))

ret = adjust_histogram(img, LinearStretching(minval = 0.2, maxval = 0.8))
ret = adjust_histogram(img, LinearStretching(nothing=>(0.2, 0.8)))
@test eltype(ret) == eltype(img)
@test isapprox(0.2, minimum(ret))
@test isapprox(0.8, maximum(ret))

# Verify that results are correctly clamped to [0.2, 0.9] if it exceeds the range
ret = adjust_histogram(img, LinearStretching((0.1, 0.8)=>(0.2, 0.9)))
@test eltype(ret) == eltype(img)
@test isapprox(T(0.2), minimum(ret))
@test isapprox(T(0.9), maximum(ret), atol=1e-2)
end

for T in (RGB{N0f8}, RGB{N0f16}, RGB{Float32}, RGB{Float64})
Expand All @@ -65,12 +80,18 @@
verify that all 32 bins have non-zero counts. This will confirm that
the dynamic range of the original image has been increased.
=#
ret = adjust_histogram(img, LinearStretching(minval = 0, maxval = 1))
ret = adjust_histogram(img, LinearStretching(nothing=>(0, 1)))
edges, counts_after = build_histogram(ret, 32, minval = 0, maxval = 1)
nonzero_after = sum(counts_after .!= 0)
@test nonzero_before < nonzero_after
@test nonzero_after == 32
@test eltype(img) == eltype(ret)
end

@testset "deprecations" begin
@info "four depwarns are expected"
@test LinearStretching(minval = 0.1) === LinearStretching(dest_minval = 0.1)
@test LinearStretching(maxval = 0.9) === LinearStretching(dest_maxval = 0.9)
@test LinearStretching(minval = 0.1, maxval = 0.9) === LinearStretching(dest_minval = 0.1, dest_maxval = 0.9)
end
end