Skip to content

Commit

Permalink
Merge pull request #4055 from JuliaLang/kms/partitions
Browse files Browse the repository at this point in the history
Converted partition functions from tasks to iterators
  • Loading branch information
StefanKarpinski committed Aug 14, 2013
2 parents e421dc3 + c085012 commit 9e1727c
Show file tree
Hide file tree
Showing 6 changed files with 231 additions and 102 deletions.
267 changes: 178 additions & 89 deletions base/combinatorics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -252,110 +252,199 @@ end
done(p::Permutations, s) = !isempty(s) && s[1] > length(p.a)


# Algorithm H from TAoCP 7.2.1.4
# Partition n into m parts
function integer_partitions{T<:Integer}(n::T, m::T)
if n < m || m < 2
throw("Require n >= m >= 2!")
end
# H1
a = [n - m + 1, ones(T, m), -1]
# H2
while true
produce(a[1:m])
if a[2] < a[1] - 1
# H3
a[1] = a[1] - 1
a[2] = a[2] + 1
continue # to H2
# Integer Partitions

immutable IntegerPartitions
n::Int
end

length(p::IntegerPartitions) = npartitions(p.n)

partitions(n::Integer) = IntegerPartitions(n)

start(p::IntegerPartitions) = Int[]
done(p::IntegerPartitions, xs) = length(xs) == p.n
next(p::IntegerPartitions, xs) = (xs = nextpartition(p.n,xs); (xs,xs))

function nextpartition(n, as)
if isempty(as); return Int[n]; end

xs = similar(as,0)
sizehint(xs,length(as)+1)

for i = 1:length(as)-1
if as[i+1] == 1
x = as[i]-1
push!(xs, x)
n -= x
while n > x
push!(xs, x)
n -= x
end
push!(xs, n)

return xs
end
push!(xs, as[i])
n -= as[i]
end
# H4
j = 3
s = a[1] + a[2] - 1
if a[j] >= a[1] - 1
while true
s = s + a[j]
j = j + 1
if a[j] < a[1] - 1
break # end loop
push!(xs, as[end]-1)
push!(xs, 1)

xs
end

const _npartitions = (Int=>Int)[]
function npartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (np = get(_npartitions, n, 0)) > 0
np
else
np = 0
sgn = 1
for k = 1:n
np += sgn * (npartitions(n-k*(3k-1)>>1) + npartitions(n-k*(3k+1)>>1))
sgn = -sgn
end
end
_npartitions[n] = np
end
# H5
if j > m
break # terminate
end


# Algorithm H from TAoCP 7.2.1.4
# Partition n into m parts
# in colex order (lexicographic by reflected sequence)

immutable FixedPartitions
n::Int
m::Int
end

length(f::FixedPartitions) = npartitions(f.n,f.m)

partitions(n::Integer, m::Integer) = (@assert 2 <= m <= n; FixedPartitions(n,m))

start(f::FixedPartitions) = Int[]
done(f::FixedPartitions, s::Vector{Int}) = !isempty(s) && s[1]-1 <= s[end]
next(f::FixedPartitions, s::Vector{Int}) = (xs = nextfixedpartition(f.n,f.m,s); (xs,xs))

function nextfixedpartition(n, m, bs)
as = copy(bs)
if isempty(as)
# First iteration
as = [n-m+1, ones(Int, m-1)]
elseif as[2] < as[1]-1
# Most common iteration
as[1] -= 1
as[2] += 1
else
# Iterate
local j
s = as[1]+as[2]-1
for j = 3:m
if as[j] < as[1]-1; break; end
s += as[j]
end
x = as[j] += 1
for k = j-1:-1:2
as[k] = x
s -= x
end
as[1] = s
end
x = a[j] + 1
a[j] = x
j = j - 1
# H6
while j > 1
a[j] = x
s = s - x
j = j - 1

return as
end

const _nipartitions = ((Int,Int)=>Int)[]
function npartitions(n::Int,m::Int)
if n < m || m == 0
0
elseif n == m
1
elseif (np = get(_nipartitions, (n,m), 0)) > 0
np
else
_nipartitions[(n,m)] = npartitions(n-1,m-1) + npartitions(n-m,m)
end
a[1] = s
end
end


# Algorithm H from TAoCP 7.2.1.5
# Set partitions
function partitions{T}(s::AbstractVector{T})
n = length(s)
n == 0 && return
if n == 1
produce(Array{T,1}[s])
return
end

# H1
a = zeros(Int,n)
b = ones(Int,n-1)
m = 1

while true
# H2
# convert from restricted growth string a[1:n] to set of sets
temp = [ Array(T,0) for k = 1:n ]
for k = 1:n
push!(temp[a[k]+1], s[k])
end
result = Array(Array{T,1},0)
for arr in temp
if !isempty(arr)
push!(result, arr)
end
end
#produce(a[1:n]) # this is the string representing set assignment
produce(result)

if a[n] != m
# H3
a[n] = a[n] + 1
continue # to H2
end
# H4
j = n - 1
while a[j] == b[j]
j = j - 1
immutable SetPartitions{T<:AbstractVector}
s::T
end

length(s::SetPartitions) = npartitions(s)

partitions(s::AbstractVector) = SetPartitions(s)

start(p::SetPartitions) = (n = length(p.s); (zeros(Int32, n), ones(Int32, n-1), n, 1))
done(p::SetPartitions, s) = !isempty(s) && s[1][1] > 0
next(p::SetPartitions, s) = nextsetpartition(p.s, s...)

function nextsetpartition(s::AbstractVector, a, b, n, m)
function makeparts(s, a, m)
temp = [ similar(s,0) for k = 0:m ]
for i = 1:n
push!(temp[a[i]+1], s[i])
end
filter!(x->!isempty(x), temp)
end
# H5
if j == 1
break # terminate

if isempty(s); return ({s}, ([1], Int[], n, 1)); end

part = makeparts(s,a,m)

if a[end] != m
a[end] += 1
else
local j
for j = n-1:-1:1
if a[j] != b[j]
break
end
end
a[j] += 1
m = b[j] + (a[j] == b[j])
for k = j+1:n-1
a[k] = 0
b[k] = m
end
a[end] = 0
end
a[j] = a[j] + 1
# H6
m = b[j] + (a[j] == b[j])
j = j + 1
while j < n
a[j] = 0
b[j] = m
j = j + 1

return (part, (a,b,n,m))

end


npartitions(p::SetPartitions) = nsetpartitions(length(p.s))
npartitions(v::AbstractVector) = nsetpartitions(length(v))

const _nsetpartitions = (Int=>Int)[]
function nsetpartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (wn = get(_nsetpartitions, n, 0)) > 0
wn
else
wn = 0
for k = 0:n-1
wn += binomial(n-1,k)*nsetpartitions(n-1-k)
end
_nsetpartitions[n] = wn
end
a[n] = 0
end
end


# For a list of integers i1, i2, i3, find the smallest
# i1^n1 * i2^n2 * i3^n3 >= x
# for integer n1, n2, n3
Expand Down
4 changes: 4 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -381,3 +381,7 @@ function addprocs_sge(np::Integer)
error("Base.addprocs_sge is discontinued - add package ClusterManagers and then use ClusterManagers.addprocs_sge instead.")
end
export addprocs_sge

function integer_partitions(n,m)
error("integer_partitions(n,m) has been renamed to partitions(n,m), and is now an iterator. Please update your code.")
end
2 changes: 2 additions & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -517,6 +517,8 @@ export
ndims,
nnz,
nonzeros,
npartitions,
nsetpartitions,
nthperm!,
nthperm,
ones,
Expand Down
45 changes: 35 additions & 10 deletions doc/stdlib/base.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3160,7 +3160,7 @@ Combinatorics

.. function:: reverse(v [, start=1 [, stop=length(v) ]] )

Reverse vector ``v``, optionally from start to stop.
Return a copy of ``v`` reversed from start to stop.

.. function:: reverse!(v [, start=1 [, stop=length(v) ]]) -> v

Expand All @@ -3180,20 +3180,45 @@ Combinatorics
iterator object. Use ``collect(permutations(a,n))`` to get an array
of all permutations.

.. function:: integer_partitions(n, m)
.. function:: partitions(n)

Generate all integer arrays that sum to ``n``. Because the number of
partitions can be very large, this function returns an iterator
object. Use ``collect(partitions(n))`` to get an array of all
partitions.

.. function:: partitions(n, m)

Generate all arrays of ``m`` integers that sum to ``n``. Because
the number of partitions can be very large, this function runs inside
a Task to produce values on demand. Write
``c = @task integer_partitions(n,m)``, then iterate ``c`` or call
``consume`` on it.
the number of partitions can be very large, this function returns an
iterator object. Use ``collect(partitions(n,m))`` to get an array of
all partitions.

.. function:: partitions(array)

Generate all set partitions of the elements of an array, represented as
arrays of arrays. Because the number of partitions can be very large, this
function runs inside a Task to produce values on demand. Write
``c = @task partitions(a)``, then iterate ``c`` or call ``consume`` on it.
Generate all set partitions of the elements of an array,
represented as arrays of arrays. Because the number of partitions
can be very large, this function returns an iterator object. Use
``collect(partitions(array))`` to get an array of all partitions.

.. function:: npartitions(n)

Calculate the number of ways of writing the integer ``n`` as a sum
of positive integers.

.. function:: npartitions(n, m)

Calculate the number of ways of writing the integer ``n`` as a sum
of ``m`` positive integers.

.. function:: npartitions(array)

Calculate the number of ways to partition ``array``, assuming
unique elements. Equivalent to ``nsetpartitions(length(array))``

.. function:: nsetpartitions(n)

Calculate the number of ways to partition a set of size ``n``.


Statistics
Expand Down
2 changes: 1 addition & 1 deletion test/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ TESTS = all core keywordargs numbers strings unicode collections hashing \
math functional bigint sorting statistics spawn parallel arpack file \
git pkg pkg2 resolve resolve2 suitesparse complex version pollfd mpfr \
broadcast socket floatapprox priorityqueue readdlm regex float16 \
combinations
combinatorics

$(TESTS) ::
@$(PRINT_JULIA) $(call spawn,$(JULIA_EXECUTABLE)) ./runtests.jl $@
Expand Down
13 changes: 11 additions & 2 deletions test/combinatorics.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,18 @@

@test factorial(7) = 5040
@test factorial(7) == 5040
@test factorial(7,3) == 7*6*5*4
@test binomial(5,3) == 10
@test isperm(shuffle([1:1000]))
a = randcycle(10)
@test ipermute!(permute!([1:10], a),a) == [1:10]
@test collect(combinations("abc",2)) == ["ab","ac","bc"]
@test collect(collect(permutations("abc"))) == ["abc","acb","bac","bca","cab","cba"]
@test collect(permutations("abc")) == ["abc","acb","bac","bca","cab","cba"]
@test collect(partitions(4)) == { [4], [3,1], [2,2], [2,1,1], [1,1,1,1] }
@test collect(partitions(8,3)) == { [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2] }
@test collect(partitions([1,2,3])) == { {[1,2,3]}, {[1,2],[3]}, {[1,3],[2]}, {[1],[2,3]}, {[1],[2],[3]} }

@test length(collect(partitions(30))) == npartitions(30) == length(partitions(30))
@test length(collect(partitions(90,4))) == npartitions(90,4) == length(partitions(90,4))
@test length(collect(partitions('a':'h'))) == npartitions('a':'h') == nsetpartitions(8) == length(partitions('a':'h'))


0 comments on commit 9e1727c

Please sign in to comment.