Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

more accurate and faster lgamma, and use a more standard branch cut #18330

Merged
merged 10 commits into from
Sep 7, 2016
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,10 @@ This section lists changes that do not have deprecation warnings.
* Keyword arguments are processed left-to-right: if the same keyword is specified more than
once, the rightmost occurrence takes precedence ([#17785]).

* The `lgamma(z)` function now uses a different (more standard) branch cut
for `real(z) < 0`, which differs from `log(gamma(z))` by multiples of 2π
in the imaginary part ([#18330]).

Library improvements
--------------------

Expand Down Expand Up @@ -637,3 +641,4 @@ Language tooling improvements
[#17546]: https://github.com/JuliaLang/julia/issues/17546
[#17668]: https://github.com/JuliaLang/julia/issues/17668
[#17785]: https://github.com/JuliaLang/julia/issues/17785
[#18330]: https://github.com/JuliaLang/julia/issues/18330
125 changes: 91 additions & 34 deletions base/special/gamma.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,49 +33,106 @@ Compute the logarithmic factorial of `x`
lfact(x::Real) = (x<=1 ? zero(float(x)) : lgamma(x+one(x)))
@vectorize_1arg Number lfact

const clg_coeff = [76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5]

function clgamma_lanczos(z)
const sqrt2pi = 2.5066282746310005

y = x = z
temp = x + 5.5
zz = log(temp)
zz = zz * (x+0.5)
temp -= zz
ser = complex(1.000000000190015, 0)
for j=1:6
y += 1.0
zz = clg_coeff[j]/y
ser += zz
end
zz = sqrt2pi*ser / x
return log(zz) - temp
end

"""
lgamma(x)

Compute the logarithm of the absolute value of [`gamma`](:func:`gamma`) for
[`Real`](:obj:`Real`) `x`, while for [`Complex`](:obj:`Complex`) `x` it computes the
logarithm of `gamma(x)`.
principal branch cut of the logarithm of `gamma(x)` (defined for negative `real(x)`
by analytic continuation from positive `real(x)`).
"""
function lgamma(z::Complex)
if real(z) <= 0.5
a = clgamma_lanczos(1-z)
b = log(sinpi(z))
const logpi = 1.14472988584940017
z = logpi - b - a
function lgamma end

# asymptotic series for log(gamma(z)), valid for sufficiently large real(z) or |imag(z)|
@inline function lgamma_asymptotic(z::Complex{Float64})
zinv = inv(z)
t = zinv*zinv
# coefficients are bernoulli[2:n+1] .// (2*(1:n).*(2*(1:n) - 1))
return (z-0.5)*log(z) - z + 9.1893853320467274178032927e-01 + # <-- log(2pi)/2
zinv*@evalpoly(t, 8.3333333333333333333333368e-02,-2.7777777777777777777777776e-03,
7.9365079365079365079365075e-04,-5.9523809523809523809523806e-04,
8.4175084175084175084175104e-04,-1.9175269175269175269175262e-03,
6.4102564102564102564102561e-03,-2.9550653594771241830065352e-02)
end

# Compute the logΓ(z) function using a combination of the asymptotic series,
# the Taylor series around z=1 and z=2, the reflection formula, and the shift formula.
# Many details of these techniques are discussed in D. E. G. Hare,
# "Computing the principal branch of log-Gamma," J. Algorithms 25, pp. 221-236 (1997),
# and similar techniques are used (in a somewhat different way) by the
# SciPy loggamma function. The key identities are also described
# at http://functions.wolfram.com/GammaBetaErf/LogGamma/
function lgamma(z::Complex{Float64})
x = real(z)
y = imag(z)
yabs = abs(y)
if !isfinite(x) || !isfinite(y) # Inf or NaN
if isinf(x) && isfinite(y)
return Complex(x, x > 0 ? (y == 0 ? y : copysign(Inf, y)) : copysign(Inf, -y))
elseif isfinite(x) && isinf(y)
return Complex(-Inf, y)
else
return Complex(NaN, NaN)
end
elseif x > 7 || yabs > 7 # use the Stirling asymptotic series for sufficiently large x or |y|
return lgamma_asymptotic(z)
elseif x < 0.1 # use reflection formula to transform to x > 0
if x == 0 && y == 0 # return Inf with the correct imaginary part for z == 0
return Complex(Inf, signbit(x) ? copysign(oftype(x, pi), -y) : -y)
end
# the 2pi * floor(...) stuff is to choose the correct branch cut for log(sinpi(z))
return Complex(1.1447298858494001741434262, # log(pi)
copysign(6.2831853071795864769252842, y) # 2pi
* floor(0.5*x+0.25)) -
log(sinpi(z)) - lgamma(1-z)
elseif abs(x - 1) + yabs < 0.1
# taylor series around zero at z=1
# ... coefficients are [-eulergamma; [(-1)^k * zeta(k)/k for k in 2:15]]
w = Complex(x - 1, y)
return w * @evalpoly(w, -5.7721566490153286060651188e-01,8.2246703342411321823620794e-01,
-4.0068563438653142846657956e-01,2.705808084277845478790009e-01,
-2.0738555102867398526627303e-01,1.6955717699740818995241986e-01,
-1.4404989676884611811997107e-01,1.2550966952474304242233559e-01,
-1.1133426586956469049087244e-01,1.000994575127818085337147e-01,
-9.0954017145829042232609344e-02,8.3353840546109004024886499e-02,
-7.6932516411352191472827157e-02,7.1432946295361336059232779e-02,
-6.6668705882420468032903454e-02)
elseif abs(x - 2) + yabs < 0.1
# taylor series around zero at z=2
# ... coefficients are [1-eulergamma; [(-1)^k * (zeta(k)-1)/k for k in 2:12]]
w = Complex(x - 2, y)
return w * @evalpoly(w, 4.2278433509846713939348812e-01,3.2246703342411321823620794e-01,
-6.7352301053198095133246196e-02,2.0580808427784547879000897e-02,
-7.3855510286739852662729527e-03,2.8905103307415232857531201e-03,
-1.1927539117032609771139825e-03,5.0966952474304242233558822e-04,
-2.2315475845357937976132853e-04,9.9457512781808533714662972e-05,
-4.4926236738133141700224489e-05,2.0507212775670691553131246e-05)
end
# use recurrence relation lgamma(z) = lgamma(z+1) - log(z) to shift to x > 7 for asymptotic series
shiftprod = Complex(x,yabs)
x += 1
sb = false # == signbit(imag(shiftprod)) == signbit(yabs)
# To use log(product of shifts) rather than sum(logs of shifts),
# we need to keep track of the number of + to - sign flips in
# imag(shiftprod), as described in Hare (1997), proposition 2.2.
signflips = 0
while x <= 7
shiftprod *= Complex(x,yabs)
sb′ = signbit(imag(shiftprod))
signflips += sb′ & (sb′ != sb)
sb = sb′
x += 1
end
shift = log(shiftprod)
if signbit(y) # if y is negative, conjugate the shift
shift = Complex(real(shift), signflips*-6.2831853071795864769252842 - imag(shift))
else
z = clgamma_lanczos(z)
shift = Complex(real(shift), imag(shift) + signflips*6.2831853071795864769252842)
end
complex(real(z), angle_restrict_symm(imag(z)))
return lgamma_asymptotic(Complex(x,y)) - shift
end
lgamma{T<:Union{Integer,Rational}}(z::Complex{T}) = lgamma(float(z))
lgamma{T<:Union{Float32,Float16}}(z::Complex{T}) = Complex{T}(lgamma(Complex{Float64}(z)))

gamma(z::Complex) = exp(lgamma(z))

Expand Down
2 changes: 1 addition & 1 deletion doc/stdlib/math.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1364,7 +1364,7 @@ Mathematical Functions

.. Docstring generated from Julia source

Compute the logarithm of the absolute value of :func:`gamma` for :obj:`Real` ``x``\ , while for :obj:`Complex` ``x`` it computes the logarithm of ``gamma(x)``\ .
Compute the logarithm of the absolute value of :func:`gamma` for :obj:`Real` ``x``\ , while for :obj:`Complex` ``x`` it computes the principal branch cut of the logarithm of ``gamma(x)`` (defined for negative ``real(x)`` by analytic continuation from positive ``real(x)``\ ).

.. function:: lfact(x)

Expand Down
39 changes: 38 additions & 1 deletion test/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -554,7 +554,7 @@ for elty in (Float32, Float64)
end
@test lgamma(1.4+3.7im) ≈ -3.7094025330996841898 + 2.4568090502768651184im
@test lgamma(1.4+3.7im) ≈ log(gamma(1.4+3.7im))
@test lgamma(-4.2+0im) ≈ lgamma(-4.2)-pi*im
@test lgamma(-4.2+0im) ≈ lgamma(-4.2)-5pi*im
@test factorial(3.0) == gamma(4.0) == factorial(3)
for x in (3.2, 2+1im, 3//2, 3.2+0.1im)
@test factorial(x) == gamma(1+x)
Expand Down Expand Up @@ -654,6 +654,43 @@ for x in -10.2:0.3456:50
@test 1e-12 > err(digamma(x+0im), digamma(x))
end

# lgamma test cases (from Wolfram Alpha)
@test lgamma(-300im) ≅ -473.17185074259241355733179182866544204963885920016823743 - 1410.3490664555822107569308046418321236643870840962522425im
@test lgamma(3.099) ≅ lgamma(3.099+0im) ≅ 0.786413746900558058720665860178923603134125854451168869796
@test lgamma(1.15) ≅ lgamma(1.15+0im) ≅ -0.06930620867104688224241731415650307100375642207340564554
@test lgamma(0.89) ≅ lgamma(0.89+0im) ≅ 0.074022173958081423702265889979810658434235008344573396963
@test lgamma(0.91) ≅ lgamma(0.91+0im) ≅ 0.058922567623832379298241751183907077883592982094770449167
@test lgamma(0.01) ≅ lgamma(0.01+0im) ≅ 4.599479878042021722513945411008748087261001413385289652419
@test lgamma(-3.4-0.1im) ≅ -1.1733353322064779481049088558918957440847715003659143454 + 12.331465501247826842875586104415980094316268974671819281im
@test lgamma(-13.4-0.1im) ≅ -22.457344044212827625152500315875095825738672314550695161 + 43.620560075982291551250251193743725687019009911713182478im
@test lgamma(-13.4+0.0im) ≅ conj(lgamma(-13.4-0.0im)) ≅ -22.404285036964892794140985332811433245813398559439824988 - 43.982297150257105338477007365913040378760371591251481493im
@test lgamma(-13.4+8im) ≅ -44.705388949497032519400131077242200763386790107166126534 - 22.208139404160647265446701539526205774669649081807864194im
@test lgamma(1+exp2(-20)) ≅ lgamma(1+exp2(-20)+0im) ≅ -5.504750066148866790922434423491111098144565651836914e-7
@test lgamma(1+exp2(-20)+exp2(-19)*im) ≅ -5.5047799872835333673947171235997541985495018556426e-7 - 1.1009485171695646421931605642091915847546979851020e-6im
@test lgamma(-300+2im) ≅ -1419.3444991797240659656205813341478289311980525970715668 - 932.63768120761873747896802932133229201676713644684614785im
@test lgamma(300+2im) ≅ 1409.19538972991765122115558155209493891138852121159064304 + 11.4042446282102624499071633666567192538600478241492492652im
@test lgamma(1-6im) ≅ -7.6099596929506794519956058191621517065972094186427056304 - 5.5220531255147242228831899544009162055434670861483084103im
@test lgamma(1-8im) ≅ -10.607711310314582247944321662794330955531402815576140186 - 9.4105083803116077524365029286332222345505790217656796587im
@test lgamma(1+6.5im) ≅ conj(lgamma(1-6.5im)) ≅ -8.3553365025113595689887497963634069303427790125048113307 + 6.4392816159759833948112929018407660263228036491479825744im
@test lgamma(1+1im) ≅ conj(lgamma(1-1im)) ≅ -0.6509231993018563388852168315039476650655087571397225919 - 0.3016403204675331978875316577968965406598997739437652369im
@test lgamma(-pi*1e7 + 6im) ≅ -5.10911758892505772903279926621085326635236850347591e8 - 9.86959420047365966439199219724905597399295814979993e7im
@test lgamma(-pi*1e7 + 8im) ≅ -5.10911765175690634449032797392631749405282045412624e8 - 9.86959074790854911974415722927761900209557190058925e7im
@test lgamma(-pi*1e14 + 6im) ≅ -1.0172766411995621854526383224252727000270225301426e16 - 9.8696044010873714715264929863618267642124589569347e14im
@test lgamma(-pi*1e14 + 8im) ≅ -1.0172766411995628137711690403794640541491261237341e16 - 9.8696044010867038531027376655349878694397362250037e14im
@test lgamma(2.05 + 0.03im) ≅ conj(lgamma(2.05 - 0.03im)) ≅ 0.02165570938532611215664861849215838847758074239924127515 + 0.01363779084533034509857648574107935425251657080676603919im
@test lgamma(2+exp2(-20)+exp2(-19)*im) ≅ 4.03197681916768997727833554471414212058404726357753e-7 + 8.06398296652953575754782349984315518297283664869951e-7im

# lgamma for non-finite arguments:
@test lgamma(Inf + 0im) === Inf + 0im
@test lgamma(Inf - 0.0im) === Inf - 0.0im
@test lgamma(Inf + 1im) === Inf + Inf*im
@test lgamma(Inf - 1im) === Inf - Inf*im
@test lgamma(-Inf + 0.0im) === -Inf - Inf*im
@test lgamma(-Inf - 0.0im) === -Inf + Inf*im
@test lgamma(Inf*im) === -Inf + Inf*im
@test lgamma(-Inf*im) === -Inf - Inf*im
@test lgamma(Inf + Inf*im) === lgamma(NaN + 0im) === lgamma(NaN*im) === NaN + NaN*im

# digamma, trigamma, polygamma & zeta test cases (compared to Wolfram Alpha)
@test digamma(7+0im) ≅ 1.872784335098467139393487909917597568957840664060076401194232
@test digamma(7im) ≅ 1.94761433458434866917623737015561385331974500663251349960124 + 1.642224898223468048051567761191050945700191089100087841536im
Expand Down