Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow more general eltypes in sparse array multiplication #33205

Merged
merged 10 commits into from
Sep 20, 2019
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ Standard library changes

#### SparseArrays

* Products involving sparse arrays now allow more general sparse `eltype`s, such as `StaticArrays` ([#33205])

#### Dates

Expand Down
90 changes: 33 additions & 57 deletions stdlib/SparseArrays/src/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,31 +3,6 @@
import LinearAlgebra: checksquare
using Random: rand!

## sparse matrix multiplication

*(A::AbstractSparseMatrixCSC{TvA,TiA}, B::AbstractSparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
*(sppromote(A, B)...)
*(A::AbstractSparseMatrixCSC{TvA,TiA}, transB::Transpose{<:Any,<:AbstractSparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(B = transB.parent; (pA, pB) = sppromote(A, B); *(pA, transpose(pB)))
*(A::AbstractSparseMatrixCSC{TvA,TiA}, adjB::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(B = adjB.parent; (pA, pB) = sppromote(A, B); *(pA, adjoint(pB)))
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}, B::AbstractSparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
(A = transA.parent; (pA, pB) = sppromote(A, B); *(transpose(pA), pB))
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}, B::AbstractSparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
(A = adjA.parent; (pA, pB) = sppromote(A, B); *(adjoint(pA), pB))
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}, transB::Transpose{<:Any,<:AbstractSparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(A = transA.parent; B = transB.parent; (pA, pB) = sppromote(A, B); *(transpose(pA), transpose(pB)))
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}, adjB::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(A = adjA.parent; B = adjB.parent; (pA, pB) = sppromote(A, B); *(adjoint(pA), adjoint(pB)))

function sppromote(A::AbstractSparseMatrixCSC{TvA,TiA}, B::AbstractSparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB}
Tv = promote_type(TvA, TvB)
Ti = promote_type(TiA, TiB)
A = convert(SparseMatrixCSC{Tv,Ti}, A)
B = convert(SparseMatrixCSC{Tv,Ti}, B)
A, B
end

# In matrix-vector multiplication, the correct orientation of the vector is assumed.
const AdjOrTransStridedMatrix{T} = Union{StridedMatrix{T},Adjoint{<:Any,<:StridedMatrix{T}},Transpose{<:Any,<:StridedMatrix{T}}}

Expand All @@ -50,10 +25,10 @@ function mul!(C::StridedVecOrMat, A::AbstractSparseMatrixCSC, B::Union{StridedVe
end
C
end
*(A::AbstractSparseMatrixCSC{TA,S}, x::StridedVector{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(x, T, size(A, 1)), A, x, one(T), zero(T)))
*(A::AbstractSparseMatrixCSC{TA,S}, B::StridedMatrix{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(B, T, (size(A, 1), size(B, 2))), A, B, one(T), zero(T)))
*(A::AbstractSparseMatrixCSC{TA}, x::StridedVector{Tx}) where {TA,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(x, T, size(A, 1)), A, x, true, false))
*(A::AbstractSparseMatrixCSC{TA}, B::StridedMatrix{Tx}) where {TA,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(B, T, (size(A, 1), size(B, 2))), A, B, true, false))

function mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, B::Union{StridedVector,AdjOrTransStridedMatrix}, α::Number, β::Number)
A = adjA.parent
Expand All @@ -76,10 +51,10 @@ function mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}
end
C
end
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TA,S}}, x::StridedVector{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(x, T, size(adjA, 1)), adjA, x, one(T), zero(T)))
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TA,S}}, B::AdjOrTransStridedMatrix{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(B, T, (size(adjA, 1), size(B, 2))), adjA, B, one(T), zero(T)))
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, x::StridedVector{Tx}) where {Tx} =
(T = promote_op(matprod, eltype(adjA), Tx); mul!(similar(x, T, size(adjA, 1)), adjA, x, true, false))
*(adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, B::AdjOrTransStridedMatrix) =
(T = promote_op(matprod, eltype(adjA), eltype(B)); mul!(similar(B, T, (size(adjA, 1), size(B, 2))), adjA, B, true, false))

function mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}, B::Union{StridedVector,AdjOrTransStridedMatrix}, α::Number, β::Number)
A = transA.parent
Expand All @@ -102,19 +77,19 @@ function mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:AbstractSparseMatrix
end
C
end
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC{TA,S}}, x::StridedVector{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(x, T, size(transA, 1)), transA, x, one(T), zero(T)))
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC{TA,S}}, B::AdjOrTransStridedMatrix{Tx}) where {TA,S,Tx} =
(T = promote_op(matprod, TA, Tx); mul!(similar(B, T, (size(transA, 1), size(B, 2))), transA, B, one(T), zero(T)))
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}, x::StridedVector{Tx}) where {Tx} =
(T = promote_op(matprod, eltype(transA), Tx); mul!(similar(x, T, size(transA, 1)), transA, x, true, false))
*(transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}, B::AdjOrTransStridedMatrix) =
(T = promote_op(matprod, eltype(transA), eltype(B)); mul!(similar(B, T, (size(transA, 1), size(B, 2))), transA, B, true, false))

# For compatibility with dense multiplication API. Should be deleted when dense multiplication
# API is updated to follow BLAS API.
mul!(C::StridedVecOrMat, A::AbstractSparseMatrixCSC, B::Union{StridedVector,AdjOrTransStridedMatrix}) =
mul!(C, A, B, one(eltype(B)), zero(eltype(C)))
mul!(C, A, B, true, false)
mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, B::Union{StridedVector,AdjOrTransStridedMatrix}) =
mul!(C, adjA, B, one(eltype(B)), zero(eltype(C)))
mul!(C, adjA, B, true, false)
mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}, B::Union{StridedVector,AdjOrTransStridedMatrix}) =
mul!(C, transA, B, one(eltype(B)), zero(eltype(C)))
mul!(C, transA, B, true, false)

function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, A::AbstractSparseMatrixCSC, α::Number, β::Number)
mX, nX = size(X)
Expand All @@ -131,8 +106,8 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, A::AbstractSparseM
end
C
end
*(X::AdjOrTransStridedMatrix{TX}, A::AbstractSparseMatrixCSC{TvA,TiA}) where {TX,TvA,TiA} =
(T = promote_op(matprod, TX, TvA); mul!(similar(X, T, (size(X, 1), size(A, 2))), X, A, one(T), zero(T)))
*(X::AdjOrTransStridedMatrix, A::AbstractSparseMatrixCSC{TvA}) where {TvA} =
(T = promote_op(matprod, eltype(X), TvA); mul!(similar(X, T, (size(X, 1), size(A, 2))), X, A, true, false))

function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, α::Number, β::Number)
A = adjA.parent
Expand All @@ -150,8 +125,8 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, adjA::Adjoint{<:An
end
C
end
*(X::AdjOrTransStridedMatrix{TX}, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}) where {TX,TvA,TiA} =
(T = promote_op(matprod, TX, TvA); mul!(similar(X, T, (size(X, 1), size(adjA, 2))), X, adjA, one(T), zero(T)))
*(X::AdjOrTransStridedMatrix, adjA::Adjoint{<:Any,<:AbstractSparseMatrixCSC}) =
(T = promote_op(matprod, eltype(X), eltype(adjA)); mul!(similar(X, T, (size(X, 1), size(adjA, 2))), X, adjA, true, false))
timholy marked this conversation as resolved.
Show resolved Hide resolved

function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}, α::Number, β::Number)
A = transA.parent
Expand All @@ -169,8 +144,8 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, transA::Transpose{
end
C
end
*(X::AdjOrTransStridedMatrix{TX}, transA::Transpose{<:Any,<:AbstractSparseMatrixCSC{TvA,TiA}}) where {TX,TvA,TiA} =
(T = promote_op(matprod, TX, TvA); mul!(similar(X, T, (size(X, 1), size(transA, 2))), X, transA, one(T), zero(T)))
*(X::AdjOrTransStridedMatrix, transA::Transpose{<:Any,<:AbstractSparseMatrixCSC}) =
(T = promote_op(matprod, eltype(X), eltype(transA)); mul!(similar(X, T, (size(X, 1), size(transA, 2))), X, transA, true, false))

function (*)(D::Diagonal, A::AbstractSparseMatrixCSC)
T = Base.promote_op(*, eltype(D), eltype(A))
Expand All @@ -184,13 +159,13 @@ end
# Sparse matrix multiplication as described in [Gustavson, 1978]:
# http://dl.acm.org/citation.cfm?id=355796

*(A::AbstractSparseMatrixCSC{Tv,Ti}, B::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(A,B)
*(A::AbstractSparseMatrixCSC{Tv,Ti}, B::Adjoint{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(A, copy(B))
*(A::AbstractSparseMatrixCSC{Tv,Ti}, B::Transpose{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(A, copy(B))
*(A::Transpose{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}, B::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}, B::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}, B::Adjoint{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))
*(A::Transpose{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}, B::Transpose{<:Any,<:AbstractSparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))
*(A::AbstractSparseMatrixCSC, B::AbstractSparseMatrixCSC) = spmatmul(A,B)
*(A::AbstractSparseMatrixCSC, B::Adjoint{<:Any,<:AbstractSparseMatrixCSC}) = spmatmul(A, copy(B))
*(A::AbstractSparseMatrixCSC, B::Transpose{<:Any,<:AbstractSparseMatrixCSC}) = spmatmul(A, copy(B))
*(A::Transpose{<:Any,<:AbstractSparseMatrixCSC}, B::AbstractSparseMatrixCSC) = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, B::AbstractSparseMatrixCSC) = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC}, B::Adjoint{<:Any,<:AbstractSparseMatrixCSC}) = spmatmul(copy(A), copy(B))
*(A::Transpose{<:Any,<:AbstractSparseMatrixCSC}, B::Transpose{<:Any,<:AbstractSparseMatrixCSC}) = spmatmul(copy(A), copy(B))

# Gustavsen's matrix multiplication algorithm revisited.
# The result rowval vector is already sorted by construction.
Expand All @@ -200,7 +175,9 @@ end
# done by a quicksort of the row indices or by a full scan of the dense result vector.
# The last is faster, if more than ≈ 1/32 of the result column is nonzero.
# TODO: extend to SparseMatrixCSCUnion to allow for SubArrays (view(X, :, r)).
function spmatmul(A::AbstractSparseMatrixCSC{Tv,Ti}, B::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
function spmatmul(A::AbstractSparseMatrixCSC{TvA,TiA}, B::AbstractSparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB}
Tv = promote_op(matprod, TvA, TvB)
Ti = promote_type(TiA, TiB)
mA, nA = size(A)
nB = size(B, 2)
nA == size(B, 1) || throw(DimensionMismatch())
Expand Down Expand Up @@ -371,8 +348,8 @@ end

## triangular sparse handling

possible_adjoint(adj::Bool, a::Real ) = a
possible_adjoint(adj::Bool, a ) = adj ? adjoint(a) : a
possible_adjoint(adj::Bool, a::Real) = a
possible_adjoint(adj::Bool, a) = adj ? adjoint(a) : a

const UnitDiagonalTriangular = Union{UnitUpperTriangular,UnitLowerTriangular}

Expand Down Expand Up @@ -776,7 +753,6 @@ mul!(y::StridedVecOrMat, A::SparseMatrixCSCSymmHerm, x::StridedVecOrMat) = mul!(
# C .= α * A * B + β * C
function mul!(C::StridedVecOrMat{T}, sA::SparseMatrixCSCSymmHerm, B::StridedVecOrMat,
α::Number, β::Number) where T

fuplo = sA.uplo == 'U' ? nzrangeup : nzrangelo
_mul!(fuplo, C, sA, B, T(α), T(β))
end
Expand Down
30 changes: 17 additions & 13 deletions stdlib/SparseArrays/src/sparsematrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -856,16 +856,17 @@ sparse(I,J,v::Number,m,n,combine::Function) = sparse(I, J, fill(v,length(I)), In
## Transposition and permutation methods

"""
halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti},
q::AbstractVector{<:Integer}, f::Function = identity) where {Tv,Ti}
halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{TvA,Ti},
q::AbstractVector{<:Integer}, f::Function = identity) where {Tv,TvA,Ti}

Column-permute and transpose `A`, simultaneously applying `f` to each entry of `A`, storing
the result `(f(A)Q)^T` (`map(f, transpose(A[:,q]))`) in `X`.

`X`'s dimensions must match those of `transpose(A)` (`size(X, 1) == size(A, 2)` and `size(X, 2) == size(A, 1)`), and `X`
must have enough storage to accommodate all allocated entries in `A` (`length(rowvals(X)) >= nnz(A)`
and `length(nonzeros(X)) >= nnz(A)`). Column-permutation `q`'s length must match `A`'s column
count (`length(q) == size(A, 2)`).
Element type `Tv` of `X` must match `f(::TvA)`, where `TvA` is the element type of `A`.
`X`'s dimensions must match those of `transpose(A)` (`size(X, 1) == size(A, 2)` and
`size(X, 2) == size(A, 1)`), and `X` must have enough storage to accommodate all allocated
entries in `A` (`length(rowvals(X)) >= nnz(A)` and `length(nonzeros(X)) >= nnz(A)`).
Column-permutation `q`'s length must match `A`'s column count (`length(q) == size(A, 2)`).

This method is the parent of several methods performing transposition and permutation
operations on [`SparseMatrixCSC`](@ref)s. As this method performs no argument checking,
Expand All @@ -876,8 +877,8 @@ algorithms for sparse matrices: multiplication and permuted transposition," ACM
250-269 (1978). The algorithm runs in `O(size(A, 1), size(A, 2), nnz(A))` time and requires no space
beyond that passed in.
"""
function halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti},
q::AbstractVector{<:Integer}, f::Function = identity) where {Tv,Ti}
function halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{TvA,Ti},
q::AbstractVector{<:Integer}, f::Function = identity) where {Tv,TvA,Ti}
_computecolptrs_halfperm!(X, A)
_distributevals_halfperm!(X, A, q, f)
return X
Expand All @@ -886,7 +887,7 @@ end
Helper method for `halfperm!`. Computes `transpose(A[:,q])`'s column pointers, storing them
shifted one position forward in `getcolptr(X)`; `_distributevals_halfperm!` fixes this shift.
"""
function _computecolptrs_halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
function _computecolptrs_halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{TvA,Ti}) where {Tv,TvA,Ti}
# Compute `transpose(A[:,q])`'s column counts. Store shifted forward one position in getcolptr(X).
fill!(getcolptr(X), 0)
@inbounds for k in 1:nnz(A)
Expand All @@ -908,7 +909,7 @@ distributing `rowvals(A)` and `f`-transformed `nonzeros(A)` into `rowvals(X)` an
respectively. Simultaneously fixes the one-position-forward shift in `getcolptr(X)`.
"""
@noinline function _distributevals_halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti},
A::AbstractSparseMatrixCSC{Tv,Ti}, q::AbstractVector{<:Integer}, f::Function) where {Tv,Ti}
A::AbstractSparseMatrixCSC{TvA,Ti}, q::AbstractVector{<:Integer}, f::Function) where {Tv,TvA,Ti}
@inbounds for Xi in 1:size(A, 2)
Aj = q[Xi]
for Ak in nzrange(A, Aj)
Expand Down Expand Up @@ -944,7 +945,8 @@ end
transpose!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = ftranspose!(X, A, identity)
adjoint!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = ftranspose!(X, A, conj)

function ftranspose(A::AbstractSparseMatrixCSC{Tv,Ti}, f::Function) where {Tv,Ti}
# manually specifying eltype allows to avoid calling return_type of f on TvA
function ftranspose(A::AbstractSparseMatrixCSC{TvA,Ti}, f::Function, eltype::Type{Tv} = TvA) where {Tv,TvA,Ti}
X = SparseMatrixCSC(size(A, 2), size(A, 1),
ones(Ti, size(A, 1)+1),
Vector{Ti}(undef, nnz(A)),
Expand All @@ -953,8 +955,10 @@ function ftranspose(A::AbstractSparseMatrixCSC{Tv,Ti}, f::Function) where {Tv,Ti
end
adjoint(A::AbstractSparseMatrixCSC) = Adjoint(A)
transpose(A::AbstractSparseMatrixCSC) = Transpose(A)
Base.copy(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC}) = ftranspose(A.parent, x -> copy(adjoint(x)))
Base.copy(A::Transpose{<:Any,<:AbstractSparseMatrixCSC}) = ftranspose(A.parent, x -> copy(transpose(x)))
Base.copy(A::Adjoint{<:Any,<:AbstractSparseMatrixCSC}) =
ftranspose(A.parent, x -> adjoint(copy(x)), eltype(A))
Base.copy(A::Transpose{<:Any,<:AbstractSparseMatrixCSC}) =
ftranspose(A.parent, x -> transpose(copy(x)), eltype(A))
function Base.permutedims(A::AbstractSparseMatrixCSC, (a,b))
(a, b) == (2, 1) && return ftranspose(A, identity)
(a, b) == (1, 2) && return copy(A)
Expand Down
Loading