Skip to content

Commit

Permalink
Merge pull request #281 from JuliaReach/schillic/dollar
Browse files Browse the repository at this point in the history
Replace $ with double backticks
  • Loading branch information
schillic authored Feb 25, 2024
2 parents c606f54 + ddfdeb7 commit a4b8878
Showing 1 changed file with 40 additions and 40 deletions.
80 changes: 40 additions & 40 deletions docs/src/man/systems.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,16 @@
## Using the `@system` Macro

A convenient way to create a new system is with the `@system` macro. For example,
the ODE $x'(t) = -2x(t)$ is simply `x' = -2x`, where $x'(t) := dx/dt$ is the derivative
of state $x(t)$ with respect to "time":
the ODE ``x'(t) = -2x(t)`` is simply `x' = -2x`, where ``x'(t) := dx/dt`` is the derivative
of state ``x(t)`` with respect to "time":

```@example system_examples
using MathematicalSystems
@system(x' = -2x)
```

We can also add state constraints, say $x(t) ≥ 0.5$,
We can also add state constraints, say ``x(t) ≥ 0.5``,

```@example system_examples
using LazySets
Expand All @@ -29,11 +29,11 @@ B = Ball2(zeros(2), 1.0)
c = [0.0, 5.0]
@system(z' = A*z + c, z ∈ B)
```
which defines the two-dimensional system $x' = y$, $y' = -x - 2y + 3$, with state
constraints $z ∈ B = \{ \sqrt{x^2 + y^2} \leq 5\}$.
which defines the two-dimensional system ``x' = y``, ``y' = -x - 2y + 3``, with state
constraints ``z ∈ B = \{ \sqrt{x^2 + y^2} \leq 5\}``.

Initial-value problems can be specified with the `@ivp` macro.
For instance, we can attach an initial condition $z(0) = (0.2, 0.2])$ to
For instance, we can attach an initial condition ``z(0) = (0.2, 0.2])`` to
the previous example:

```@example system_examples
Expand All @@ -51,9 +51,9 @@ systems such as descriptor, polynomial or general nonlinear systems given by a s
Julia function are available as well (see the tables below).

Some applications require distinguishing between *controlled* inputs and *uncontrolled* or
noise inputs. In this library we make such distinction by noting field names with $u$ and $w$
noise inputs. In this library we make such distinction by noting field names with ``u`` and ``w``
for (controlled) inputs and noise respectively. Please note that some systems are structurally
equivalent, for example `CLCCS` and `NCLCS` being $x' = Ax + Bu$ and $x' = Ax + Dw$ respectively;
equivalent, for example `CLCCS` and `NCLCS` being ``x' = Ax + Bu`` and ``x' = Ax + Dw`` respectively;
the difference lies in the resulting value of getter functions such as `inputset` and `noiseset`.

## Summary Tables
Expand Down Expand Up @@ -105,35 +105,35 @@ The following table summarizes the equation represented by each system type

|Equation | State constraints | Input constraints|System type (abbr.)|
|:-------|-------------|-----------|-----|
|$x' = 0$|no |no| CIS|
|$x' = 0, x ∈ X$|yes|no|CCIS|
|$x' = Ax$| no|no|LCS|
|$x' = Ax + c$|no|no |ACS|
|$x' = Ax + Bu$|no | no|LCCS|
|$x' = Ax + Bu + c$|no|no|ACCS|
|$x' = Ax, x ∈ X$|yes|no|CLCS||
|$x' = Ax + c, x ∈ X$|yes|no|CACS|
|$x' = Ax + Bu + c, x ∈ X, u ∈ U$|yes|yes|CACCS|
|$x' = Ax + Bu, x ∈ X, u ∈ U$|yes|yes|CLCCS|
|$Ex' = Ax$|no|no|LACS|
|$Ex' = Ax, x ∈ X$|yes|no|CLACS|
|$x' = p(x)$|no|no|PCS|
|$x' = p(x), x ∈ X$|yes|no|CPCS|
|$x' = f(x)$|no|no|BBCS|
|$x' = f(x), x ∈ X$|yes|no|CBBCS|
|$x' = f(x, u)$|no|no|BBCCS|
|$x' = f(x, u), x ∈ X, u ∈ U$|yes|yes|CBBCCS|
|$x' = Ax + Dw$|no|no|NLCS|
|$x' = Ax + Dw, x ∈ X, w ∈ W$|yes|yes|NCLCS |
|$x' = Ax + Bu + Dw$|no|no|NLCCS|
|$x' = Ax + Bu + Dw, x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCLCCS |
|$x' = Ax + Bu + c + Dw$|no|no|NACCS|
|$x' = Ax + Bu + c + Dw, x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCALCCS |
|$x' = f(x, u, w)$|no|no|NBBCCS|
|$x' = f(x, u, w), x ∈ X, u ∈ U, w ∈ W$|yes|yes|NCBBCCS|
|$Mx'' + Cx' + Kx = 0$|no|no|SOLCS|
|$Mx'' + Cx' + Kx = b$|no|no|SOACS|
|$Mx'' + Cx' + Kx = Bu + d, x ∈ X, u ∈ U$|yes|yes|SOCACCS|
|$Mx'' + Cx' + Kx = Bu, x ∈ X, u ∈ U$|yes|yes|SOCLCCS|
|$Mx'' + Cx' + f_i(x) = f_e$|no|no|SOCS|
|$Mx'' + Cx' + f_i(x) = f_e$, x ∈ X, u ∈ U$|yes|yes|SOCCS|
|``x' = 0``|no |no| CIS|
|``x' = 0, x ∈ X``|yes|no|CCIS|
|``x' = Ax``| no|no|LCS|
|``x' = Ax + c``|no|no |ACS|
|``x' = Ax + Bu``|no | no|LCCS|
|``x' = Ax + Bu + c``|no|no|ACCS|
|``x' = Ax, x ∈ X``|yes|no|CLCS||
|``x' = Ax + c, x ∈ X``|yes|no|CACS|
|``x' = Ax + Bu + c, x ∈ X, u ∈ U``|yes|yes|CACCS|
|``x' = Ax + Bu, x ∈ X, u ∈ U``|yes|yes|CLCCS|
|``Ex' = Ax``|no|no|LACS|
|``Ex' = Ax, x ∈ X``|yes|no|CLACS|
|``x' = p(x)``|no|no|PCS|
|``x' = p(x), x ∈ X``|yes|no|CPCS|
|``x' = f(x)``|no|no|BBCS|
|``x' = f(x), x ∈ X``|yes|no|CBBCS|
|``x' = f(x, u)``|no|no|BBCCS|
|``x' = f(x, u), x ∈ X, u ∈ U``|yes|yes|CBBCCS|
|``x' = Ax + Dw``|no|no|NLCS|
|``x' = Ax + Dw, x ∈ X, w ∈ W``|yes|yes|NCLCS |
|``x' = Ax + Bu + Dw``|no|no|NLCCS|
|``x' = Ax + Bu + Dw, x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCLCCS |
|``x' = Ax + Bu + c + Dw``|no|no|NACCS|
|``x' = Ax + Bu + c + Dw, x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCALCCS |
|``x' = f(x, u, w)``|no|no|NBBCCS|
|``x' = f(x, u, w), x ∈ X, u ∈ U, w ∈ W``|yes|yes|NCBBCCS|
|``Mx'' + Cx' + Kx = 0``|no|no|SOLCS|
|``Mx'' + Cx' + Kx = b``|no|no|SOACS|
|``Mx'' + Cx' + Kx = Bu + d, x ∈ X, u ∈ U``|yes|yes|SOCACCS|
|``Mx'' + Cx' + Kx = Bu, x ∈ X, u ∈ U``|yes|yes|SOCLCCS|
|``Mx'' + Cx' + f_i(x) = f_e``|no|no|SOCS|
|``Mx'' + Cx' + f_i(x) = f_e``, x ∈ X, u ∈ U``|yes|yes|SOCCS|

0 comments on commit a4b8878

Please sign in to comment.