Scripts and data used in the Multi modal MDS analysis paper
![image](https://private-user-images.githubusercontent.com/98902126/298932913-24ef4743-5691-4e2f-b248-a61b989e0245.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5MzI5MTMtMjRlZjQ3NDMtNTY5MS00ZTJmLWIyNDgtYTYxYjk4OWUwMjQ1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTMyNTM5YTU2YTk3M2NlM2Q4MDAxOWE3YWQ1ODIzMzM3MDg4Zjg4NTZkN2EyYjZkNTBkMzk5OTgxOTcwYmQxYzUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.sbfizFiMp6KcMUWqBwbkIMjsgl00Tr6vr3JYwdBvgys)
matrices_preparation_for_MOFA: Create list of matrices of same samples' different modalities for both cohort separately
BMMNC_MOFA_04012023.Rmd: Downstream analysis of latent factors from MOFA, including survival analysis for BMMNC cohort
CD34RNAseq_MOFA_04012023.Rmd: Downstream analysis of latent factors from MOFA, including survival analysis for CD34+ RNASeq cohort
Characterization_of_mutations_relation_with_geneSets.R: Characterization of SF3B1 & SRSF2 mutation association with gene sets scores, including survival analysis
![image](https://private-user-images.githubusercontent.com/98902126/298938779-bf464642-0538-498b-bcaa-415f975c48b7.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5Mzg3NzktYmY0NjQ2NDItMDUzOC00OThiLWJjYWEtNDE1Zjk3NWM0OGI3LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWMyMGM2N2QxN2EyOTllZGM0YjQ5MTZjNDAyYjVmYTZjOGU4M2ZlMTcyMzUyOTE5NzA3MGMzYjdkYmQ5ZGM3ZjkmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.yfX_8oExelJhjAOFDkciZLZndg-EI_Ci8nHIWt1urPk)
Run the "Important features per factors" chunk in BMMNC_MOFA_04012023.Rmd. Important features were selected by having absolute weights over 0.5.
![image](https://private-user-images.githubusercontent.com/98902126/298940524-5997d49b-5157-4e5e-a25e-856e558d7752.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5NDA1MjQtNTk5N2Q0OWItNTE1Ny00ZTVlLWEyNWUtODU2ZTU1OGQ3NzUyLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWI5OTBiNjI3ZTFjMzcyNjFmY2NiZDBhMmMzYzM2NTg3ZDQ1NmZjNTE4NjQxOWViYjlhM2QyMjA1YjExNzcwMTYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.nZlxsQhfji_NlpjAm73g8dvoaxDCV56zNRL4BiJgTFw)
Run the "Important features for Factor 1" chunk in BMMNC_MOFA_04012023.Rmd. Important features were selected by having absolute scaled weights over 0.5 for Factor 1.
![image](https://private-user-images.githubusercontent.com/98902126/298941873-98537c86-84b3-4b3b-85e5-01dc892e9250.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5NDE4NzMtOTg1MzdjODYtODRiMy00YjNiLTg1ZTUtMDFkYzg5MmU5MjUwLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTRlY2M2ZDFlNDA0YjkyNzBjYTJiOWFkMzQyMmUzMWFlY2M0NjI5ZmRkMjBhMGI4OWRjYTRiMDdjMWNlZTVmOTYmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.8OcFj6lJdXqXf8omWGOgMdbHfQR_FLf_Kycum4w6w2c)
The "corrTabs" function takes gene sets scores and mutations and calcutes their correlation coeffecients in addition to p-values from Wilcox rank-sum test (Characterization_of_mutations_relation_with_geneSets.R). Heatmap then generated for each mutation separately. Stars indicating p-values manually added.
![image](https://private-user-images.githubusercontent.com/98902126/298943740-c2e00132-e1e7-41b9-8130-bb0275162209.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5NDM3NDAtYzJlMDAxMzItZTFlNy00MWI5LTgxMzAtYmIwMjc1MTYyMjA5LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTY5MzI5MWNjNWJlZmVlYzlmMjk5ODY1MGYyMDBhOGJiZGU2YjI5MDZmN2QyMDY0NzJkYTVmYjhhNDhmY2UwM2UmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.3wiCqJL1ZcSsyj73db3EeyOvoCt8ZcL7GijhIEefv9w)
The "my_Plot_class" function use significant gene sets names as an argument and create boxplots for each of them with mutation status. For each mutation function run separately (Characterization_of_mutations_relation_with_geneSets.R).
![image](https://private-user-images.githubusercontent.com/98902126/298945451-2727563d-4cfc-46a5-b40d-b809c6d4a964.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTk3MjMsIm5iZiI6MTczOTE5OTQyMywicGF0aCI6Ii85ODkwMjEyNi8yOTg5NDU0NTEtMjcyNzU2M2QtNGNmYy00NmE1LWI0MGQtYjgwOWM2ZDRhOTY0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDE0NTcwM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWRmY2ViMWI5NjdjNGE4OTA2MWZkMTE5MzYyOGMyZGYxODc4NGRhYjgwYjBmNDYyMTQyYTgzODA5MjZlZDY0YWEmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.5gOpYglYtAghy3f74ghHSoGjxd89kYCA3CQngeJibGg)
The "BMMNC/CD34+ Clinical Outcomes for Aging signatures of patients based on SF3B1 status" parts in the Characterization_of_mutations_relation_with_geneSets.R create Kaplan-Meier plots for specific Inflammation/Aging gene sets (Inflammator chemokines and Inflammatory cytokines, first splitting them based on SF3B1 status (WT and mutated) then splitting mutated ones into "high" and "low". Pairwise p-values and legend titles manually added.