-
Notifications
You must be signed in to change notification settings - Fork 26
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add unobserved_components_explanatory model #329
Conversation
nile = CSV.File(StateSpaceModels.NILE) |> DataFrame | ||
steps_ahead = 10 | ||
nile_y = nile.flow | ||
X = [0.906 0.247 0.065; 0.443 0.211 0.778; 0.745 0.32 0.081; 0.512 0.011 0.95; 0.253 0.99 0.136; 0.334 0.285 0.345; 0.427 0.078 0.449; 0.867 0.468 0.119; 0.099 0.476 0.04; 0.125 0.157 0.979; 0.692 0.328 0.558; 0.136 0.279 0.91; 0.032 0.022 0.346; 0.35 0.321 0.748; 0.93 0.852 0.115; 0.959 0.023 0.291; 0.774 0.631 0.059; 0.183 0.62 0.563; 0.297 0.434 0.124; 0.15 0.788 0.941; 0.893 0.851 0.298; 0.354 0.623 0.814; 0.131 0.355 0.719; 0.941 0.847 0.823; 0.057 0.719 0.176; 0.245 0.064 0.287; 0.805 0.366 0.027; 0.337 0.28 0.191; 0.823 0.893 0.4; 0.45 0.054 0.463; 0.891 0.661 0.365; 0.711 0.379 0.718; 0.36 0.792 0.0; 0.259 0.398 0.783; 0.39 0.832 0.179; 0.461 0.828 0.061; 0.934 0.575 0.829; 0.753 0.903 0.832; 0.729 0.28 0.71; 0.162 0.505 0.684; 0.637 0.266 0.309; 0.991 0.824 0.73; 0.383 0.371 0.828; 0.618 0.542 0.516; 0.484 0.503 0.101; 0.599 0.443 0.559; 0.453 0.087 0.414; 0.324 0.545 0.931; 0.51 0.596 0.049; 0.656 0.677 0.855; 0.869 0.206 0.392; 0.373 0.78 0.09; 0.692 0.564 0.374; 0.746 0.839 0.649; 0.096 0.342 0.578; 0.459 0.999 0.078; 0.608 0.776 0.99; 0.836 0.719 0.063; 0.283 0.652 0.737; 0.631 0.752 0.883; 0.691 0.081 0.348; 0.821 0.364 0.711; 0.564 0.881 0.045; 0.03 0.6 0.734; 0.091 0.975 0.586; 0.766 0.965 0.567; 0.246 0.14 0.612; 0.096 0.371 0.774; 0.092 0.797 0.055; 0.437 0.096 0.641; 0.231 0.895 0.384; 0.647 0.634 0.325; 0.681 0.612 0.507; 0.122 0.304 0.524; 0.648 0.364 0.023; 0.587 0.294 0.481; 0.377 0.61 0.275; 0.24 0.267 0.63; 0.222 0.24 0.283; 0.509 0.195 0.741; 0.218 0.944 0.804; 0.834 0.72 0.432; 0.563 0.016 0.229; 0.42 0.571 0.976; 0.62 0.31 0.238; 0.292 0.786 0.647; 0.145 0.938 0.018; 0.864 0.918 0.967; 0.926 0.09 0.712; 0.068 0.688 0.407; 0.047 0.739 0.862; 0.426 0.323 0.057; 0.972 0.092 0.697; 0.928 0.761 0.841; 0.077 0.757 0.522; 0.538 0.98 0.388; 0.357 0.843 0.108; 0.471 0.2 0.491; 0.97 0.026 0.486; 0.612 0.999 0.249; 0.539 0.877 0.886; 0.156 0.892 0.617; 0.159 0.57 0.768; 0.485 0.081 0.468; 0.924 0.506 0.68; 0.219 0.068 0.711; 0.457 0.461 0.514; 0.87 0.21 0.412; 0.907 0.305 0.581; 0.688 0.441 0.311] |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just out of curiosity, what is this time series?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just random exogenous features. The different versions in Julia in tests were generating different numbers even with a fixed seed
# rj_temp = CSV.File(RJ_TEMPERATURE) |> DataFrame | ||
# rj_tem_values = rj_temp.Values ./ 100 | ||
# steps_ahead = 52 | ||
# X = rand(length(rj_tem_values) + steps_ahead, 1) | ||
# β = [0.1] | ||
# X_train = X[1:end - steps_ahead, :] | ||
# X_test = X[end - steps_ahead + 1:end, :] | ||
# rj_tem_values += X_train*β | ||
# model = UnobservedComponentsExplanatory(rj_tem_values, X_train; trend = "local level", cycle = "stochastic") | ||
# fit!(model) | ||
# model.hyperparameters | ||
# forec = forecast(model, X_test) | ||
|
||
# TODO check with other software maybe statsmodels | ||
# @test loglike(model) ≈ -1032.40953 atol = 1e-5 rtol = 1e-5 | ||
# filt = kalman_filter(model) | ||
# forec = forecast(model, X_test) | ||
# @test monotone_forecast_variance(forec) | ||
# smoother = kalman_smoother(model) | ||
# alpha = get_smoothed_state(smoother) | ||
# @test maximum(alpha[:, 1]) >= 296 | ||
# @test minimum(alpha[:, 1]) <= 296 | ||
# @test maximum(alpha[:, 2]) >= 7.5 | ||
# @test minimum(alpha[:, 2]) <= -7.5 | ||
|
||
# # Testing that it does not break | ||
# rj_temp = CSV.File(RJ_TEMPERATURE) |> DataFrame | ||
# model = UnobservedComponents(rj_temp.Values; trend = "smooth trend", cycle = "stochastic") | ||
# fit!(model) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
remove comments
# "linear deterministic trend", | ||
# "linear trend", | ||
"local linear trend", | ||
# "damped local lineaar trend", | ||
# "random walk with drift" | ||
"smooth trend" | ||
] | ||
return true | ||
end | ||
function parse_trend(trend::String) | ||
validate_trend(trend) | ||
(has_irregular, has_trend, stochastic_trend, | ||
has_slope, stochastic_slope) = (false, false, false, false, false) | ||
if trend == "local level" | ||
(has_irregular, has_trend, stochastic_trend, | ||
has_slope, stochastic_slope) = (true, true, true, false, false) | ||
elseif trend == "random walk" | ||
(has_irregular, has_trend, stochastic_trend, | ||
has_slope, stochastic_slope) = (false, true, true, false, false) | ||
elseif trend == "local linear trend" | ||
(has_irregular, has_trend, stochastic_trend, | ||
has_slope, stochastic_slope) = (true, true, true, true, true) | ||
elseif trend == "smooth trend" | ||
(has_irregular, has_trend, stochastic_trend, | ||
has_slope, stochastic_slope) = (true, true, false, true, true) | ||
end | ||
# Validate trend booleans | ||
if !has_trend && stochastic_trend | ||
error("Invalid trend specification.") | ||
end | ||
if !has_trend && has_slope | ||
error("Invalid trend specification.") | ||
end | ||
if !has_slope && stochastic_slope | ||
error("Invalid trend specification.") | ||
end | ||
return (has_irregular, has_trend, stochastic_trend, has_slope, stochastic_slope) | ||
end | ||
function validate_seasonal(seasonal::String) | ||
if seasonal == "no" | ||
return true | ||
else | ||
spl = split(seasonal) | ||
# TODO better error messaage | ||
# Maybe a no string can be also valid | ||
@assert length(spl) == 2 | ||
@assert spl[1] in ["deterministic", "stochastic"] | ||
return true | ||
end | ||
end | ||
function parse_seasonal(seasonal::String) | ||
validate_seasonal(seasonal) | ||
if seasonal == "no" | ||
has_seasonal, stochastic_seasonal, seasonal_freq = (false, false, 0) | ||
return has_seasonal, stochastic_seasonal, seasonal_freq | ||
else | ||
spl = split(seasonal) | ||
stochastic_seasonal = spl[1] == "stochastic" | ||
seasonal_freq = parse(Int, spl[2]) | ||
has_seasonal = seasonal_freq == 0 ? false : true | ||
return has_seasonal, stochastic_seasonal, seasonal_freq | ||
end | ||
end | ||
function validate_cycle(cycle::String) | ||
if cycle == "no" | ||
return true | ||
else | ||
spl = split(cycle) | ||
# TODO better error messaage | ||
if length(spl) == 1 | ||
@assert spl[1] in ["deterministic", "stochastic"] | ||
return true | ||
elseif length(spl) == 2 | ||
@assert spl[1] in ["deterministic", "stochastic"] | ||
@assert spl[2] == "damped" | ||
return true | ||
end | ||
end | ||
return false | ||
end | ||
function parse_cycle(cycle::String) | ||
validate_cycle(cycle) | ||
if cycle == "no" | ||
has_cycle, stochastic_cycle, damped_cycle = (false, false, false) | ||
return has_cycle, stochastic_cycle, damped_cycle | ||
else | ||
spl = split(cycle) | ||
has_cycle = true | ||
# TODO better error messaage | ||
# Maybe a no string can be also valid | ||
if length(spl) == 1 | ||
stochastic_cycle = spl[1] == "stochastic" | ||
return has_cycle, stochastic_cycle, false | ||
elseif length(spl) == 2 | ||
stochastic_cycle = spl[1] == "stochastic" | ||
damped_cycle = spl[2] == "damped" | ||
return has_cycle, stochastic_cycle, damped_cycle | ||
end | ||
end | ||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I feel like these are duplicates from Unobserved Components. Honestly, I think that the explanatory variables should be implemented in the Unobserved Components model. We could use the TimeVariant filter even if we don't have explanatory variables, I believe this is the best way of not having to maintain two nearly identical codebases.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I will implement this change and submit again
Add the unobserved components explanatory model. Unfortunately, including the cycle component results in instability, consistently leading to some hyperparameters being NaN. However, the other components perform well.