Skip to content
This repository has been archived by the owner on Feb 19, 2023. It is now read-only.

A comparison between various ML models from scikit-learn

License

Notifications You must be signed in to change notification settings

LarsChrWiik/Scikit-Learn-ML-Comparison

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Comparing-Machine-Learning-Models

A comparison between various ML models from scikit-learn:

classifier accuracy precision recall f1 f1_weighted
Tuned MLPClassifier 0.899 0.912726 0.877908 0.894653 0.898958
GradientBoostingClassifier 0.832 0.808642 0.831558 0.819650 0.832235
RandomForestClassifier 0.821 0.812567 0.811516 0.811214 0.821279
XGBClassifier 0.818 0.808126 0.808430 0.807469 0.818304
MLPClassifier 0.757 0.808344 0.713088 0.757438 0.757071
DecisionTreeClassifier 0.756 0.738140 0.741797 0.739125 0.756386
LogisticRegression 0.713 0.751262 0.675667 0.710398 0.713162
KNeighborsClassifier 0.686 0.644972 0.673797 0.658759 0.686488
SVC 0.683 0.869677 0.615200 0.720035 0.691801
SGDClassifier 0.639 0.369239 0.719592 0.438582 0.689179
GaussianNB 0.594 0.588844 0.566550 0.576690 0.593897
BernoulliNB 0.517 0.111552 0.582474 0.132505 0.629275
DummyClassifier 0.516 0.480779 0.483824 0.481079 0.517320

Feature importance graph:

logo

About

A comparison between various ML models from scikit-learn

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages