Skip to content

Commit

Permalink
update readme and paddlets version for 1.1.0 release. (PaddlePaddle#339)
Browse files Browse the repository at this point in the history
  • Loading branch information
kehuo authored Dec 29, 2022
1 parent 4f7acf0 commit d91b76b
Show file tree
Hide file tree
Showing 3 changed files with 37 additions and 25 deletions.
30 changes: 18 additions & 12 deletions README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,26 +20,30 @@ PaddleTS 是一个易用的深度时序建模的Python库,它基于飞桨深

* 设计统一数据结构,实现对多样化时序数据的表达,支持单目标与多目标变量,支持多类型协变量
* 封装基础模型功能,如数据加载、回调设置、损失函数、训练过程控制等公共方法,帮助开发者在新模型开发过程中专注网络结构本身
* 内置业界领先的深度学习模型,包括NBEATS、NHiTS、LSTNet、TCN、Transformer, DeepAR(概率预测)、Informer等时序预测模型,以及TS2Vec等时序表征模型
* 内置业界领先的深度学习模型,包括NBEATS、NHiTS、LSTNet、TCN、Transformer、DeepAR、Informer等时序预测模型,
TS2Vec、CoST等时序表征模型,以及
Autoencoder、VAE、AnomalyTransformer等时序异常检测模型
* 内置多样化的数据转换算子,支持数据处理与转换,包括缺失值填充、异常值处理、归一化、时间相关的协变量提取等
* 内置经典的数据分析算子,帮助开发者便捷实现数据探索,包括数据统计量信息及数据摘要等功能
* 自动模型调优AutoTS,支持多类型HPO(Hyper Parameter Optimization)算法,在多个模型和数据集上展现显著调优效果
* 第三方机器学习模型及数据转换模块自动集成,支持包括sklearn、pyod等第三方库的时序应用
* 第三方机器学习模型及数据转换模块自动集成,支持包括sklearn、[pyod](https://github.com/yzhao062/pyod)等第三方库的时序应用
* 支持在GPU设备上运行基于PaddlePaddle的时序模型
* 时序模型集成学习能力

最新更新:
* 发布时序表征模型 Contrastive Learning of Disentangled Seasonal-trend Representations(CoST)
* 支持时序异常检测,发布包括AE (Autoencoder)、VAE (Variational Autoencoder)、AnomalyTransformer深度学习模型
* 支持第三方时序异常检测库[pyod](https://github.com/yzhao062/pyod)自动集成
* 新增时序模型集成学习能力。目前发布版本支持StackingEnsembleForecaster和WeightingEnsembleForecaster等2种时序预测集成学习方法
* RNN模型现在支持使用分类特征和静态协变量
* 新增基于表征模型的时序预测功能,支持使用时序表征模型解决时序预测任务
* 支持基于多时序数据集的组合训练
* 新增时序分类能力
* 全新发布6个深度时序模型。
USAD(UnSupervised Anomaly Detection)与MTAD_GAT(Multivariate Time-series Anomaly Detection via Graph Attention Network)异常检测模型,
CNN与Inception Time时序分类模型,
SCINet(Sample Convolution and Interaction Network)与TFT(Temporal Fusion Transformer)时序预测模型
* 新发布[Paddle Inference](https://www.paddlepaddle.org.cn/paddle/paddleinference)支持,已适配时序预测与时序异常检测
* 新增模型可解释性能力。包括模型无关的可解释性与模型相关的可解释性
* 新增支持基于表征的聚类与分类

您也可以参考[发布说明](https://github.com/PaddlePaddle/PaddleTS/wiki/Release-Notes)获取更详尽的更新列表。

未来,更多的高级特性会进一步发布,包括但不限于:
* 更多时序异常检测模型
* 更多时序表征模型
* 更多概率预测模型
* 更多时序模型
* 场景化Pipeline,支持端到端真实场景解决方案


Expand All @@ -56,10 +60,12 @@ PaddleTS 是一个易用的深度时序建模的Python库,它基于飞桨深
| [**paddlets.models.forecasting**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/models/overview.html) | 时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序预测模型 |
| [**paddlets.models.representation**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/models/representation.html) | 时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序表征模型 |
| [**paddlets.models.anomaly**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/models/anomaly.html) | 时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序异常检测模型 |
| [**paddlets.models.classify**](https://paddlets.readthedocs.io/zh_CN/latest/source/api/paddlets.models.classify.html) | 时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序分类模型 |
| [**paddlets.pipeline**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/pipeline/overview.html) | 建模任务流模块,支持特征工程、模型训练、模型评估的任务流实现 |
| [**paddlets.metrics**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/metrics/overview.html) | 效果评估模块,提供多维度模型评估能力 |
| [**paddlets.analysis**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/analysis/overview.html) | 数据分析模块,提供高效的时序特色数据分析能力 |
| [**paddlets.ensemble**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/ensemble/overview.html) | 时序集成学习模块,基于模型集成提供时序预测能力 |
| [**paddlets.xai**](https://paddlets.readthedocs.io/zh_CN/latest/source/api/paddlets.xai.html) | 时序模型可解释性模块 |
| [**paddlets.utils**](https://paddlets.readthedocs.io/zh_CN/latest/source/modules/backtest/overview.html) | 工具集模块,提供回测等基础功能 |


Expand Down
30 changes: 18 additions & 12 deletions README_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,28 +32,32 @@ PaddleTS is an easy-to-use Python library for deep time series modeling,
loss computation, training loop control, etc.) and allows developers to focus on
the implementation of network architectures when developing new models
* A set of state-of-the-art deep learning models containing
NBEATS, NHiTS, LSTNet, TCN, Transformer, DeepAR(Probabilistic), Informer, etc. for forecasting, TS2Vec for representation
NBEATS, NHiTS, LSTNet, TCN, Transformer, DeepAR, Informer, etc. for forecasting,
TS2Vec, CoST, etc. for representation,
AutoEncoder, VAE, AnomalyTransformer, etc. for anomaly detection
* A set of transformation operators for data preprocessing (e.g. missing values/outliers handling,
one-hot encoding, normalization, and automatic date/time-related covariates generation, etc.)
* A set of analysis operators for quick data exploration (e.g. basic statistics and summary)
* Automatic time series modeling module (AutoTS) which supports mainstream Hyper Parameter Optimization algorithms and shows significant improvement on multiple models and datasets
* Third-party (e.g. scikit-learn) ML models & data transformations integration
* Third-party (e.g. scikit-learn, [pyod](https://github.com/yzhao062/pyod)) ML models & data transformations integration
* Time series model ensemble

Recently updated:

* Released a new time series representation model, i.e. Contrastive Learning of Disentangled Seasonal-trend Representations(CoST)
* Time series anomaly detection model supported, with three deep models released, including AE(AutoEncoder), VAE(Variational AutoEncoder), and AnomalyTransformer
* Third-party [pyod](https://github.com/yzhao062/pyod) ML models integration supported
* Support time series model ensemble with two types of ensemble forecaster, StackingEnsembleForecaster and WeightingEnsembleForecaster proposed
* RNN time series forecasting model supports categorical features and static covariates
* New representation forecaster to support representation models to solve time series forecasting task
* Support joint training of multiple time series datasets
* PaddleTS now supports time series classification
* PaddleTS releases 6 new time series models.
USAD(UnSupervised Anomaly Detection) and MTAD-GAT(Multivariate Time-series Anomaly Detection via Graph Attention Network) for anomaly detection,
CNN and Inception Time for time series classification,
SCINet(Sample Convolution and Interaction Network) and TFT(Temporal Fusion Transformer) for forecasting
* [Paddle Inference](https://www.paddlepaddle.org.cn/paddle/paddleinference) is now available for PaddleTS time series forecasting and anomaly detection
* PaddleTS now supports both model-agnostic and model-specific explanation
* PaddleTS now supports representation-based time series cluster and classification

Please also see [release notes](https://github.com/PaddlePaddle/PaddleTS/wiki/Release-Notes) to get exhaustive update lists.

In the future, more advanced features will be coming, including:

* More time series anomaly detection models
* More time series representation learning models
* More probabilistic forecasting models
* More time series models
* Scenario-specific pipelines which aim to provide an end-to-end solution for solving real-world business problems
* And more

Expand All @@ -71,10 +75,12 @@ Specifically, PaddleTS consists of the following modules:
| [**paddlets.models.forecasting**](https://paddlets.readthedocs.io/en/latest/source/modules/models/overview.html) | PaddlePaddle-based deep neural network models for time series forecasting. |
| [**paddlets.models.representation**](https://paddlets.readthedocs.io/en/latest/source/modules/models/representation.html) | PaddlePaddle-based deep neural network models for time series representation. |
| [**paddlets.models.anomaly**](https://paddlets.readthedocs.io/en/latest/source/modules/models/anomaly.html) | PaddlePaddle-based deep neural network models for time series anomaly detection. |
| [**paddlets.models.classify**](https://paddlets.readthedocs.io/en/latest/source/api/paddlets.models.classify.html) | PaddlePaddle-based deep neural network models for time series classification. |
| [**paddlets.pipeline**](https://paddlets.readthedocs.io/en/latest/source/modules/pipeline/overview.html) | Pipeline for building time series analysis and modeling workflows. |
| [**paddlets.metrics**](https://paddlets.readthedocs.io/en/latest/source/modules/metrics/overview.html) | Metrics for measuring the performance of a model. |
| [**paddlets.analysis**](https://paddlets.readthedocs.io/en/latest/source/modules/analysis/overview.html) | Quick data exploration and advanced data analysis. |
| [**paddlets.ensemble**](https://paddlets.readthedocs.io/en/latest/source/modules/ensemble/overview.html) | Time series ensemble methods. |
| [**paddlets.xai**](https://paddlets.readthedocs.io/en/latest/source/api/paddlets.xai.html) | Model-agnostic and model-specific explanation for time series modeling. |
| [**paddlets.utils**](https://paddlets.readthedocs.io/en/latest/source/modules/backtest/overview.html) | Utility functions. |


Expand Down
2 changes: 1 addition & 1 deletion paddlets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,4 @@
from paddlets.datasets import TimeSeries, TSDataset
from paddlets.pipeline import Pipeline

__version__="1.0.2"
__version__="1.1.0"

0 comments on commit d91b76b

Please sign in to comment.