TMEclassifier is an R package to perform tumor microenvironment classification based on TME characteristics of gastric cancer.
- 1.TMEclassifier was designed to classify the tumor microenvironment (TME) of gastric cancer and even other cancers.
- 2.This package consists an ensemble classification model integrating
6 machine learning algorithms:
Support Vector Machine (SVM)
,Random Forest (RF)
,Neural Networks (NNET)
,k-Nearest Neighbor (KNN)
,Decision Tree (DecTree)
,eXtreme Gradient Boosting (XGBoost)
. - 3.TMEclassifier identifies three TME-clusters based on expression profiles of 134 TME-related genes and ensemble models.
- 4.In addition, TMEclassifier provides functions for multi-scale
visualization of TMEcluster and some functions depend on
IOBR
, which was developed by our team previously. The research about IOBR can be reached by this link.
It is essential that you have R 3.6.3 or above already installed on your computer or server. Before installing TMEclassifier, please install all dependencies by executing the following command in R console:
The dependencies includes caret
, e1071
, crayon
, ggplot2
,
scales
, tibble
, IOBR
, ggplot2
and ggpubr
.
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
depens<-c("crayon", "ggplot2", "scales", "tibble", "caret", "e1071", "randomForest", "xgboost", "ggpp", "kernlab", "ComplexHeatmap", "survminer", "ggpubr")
for(i in 1:length(depens)){
depen<-depens[i]
if (!requireNamespace(depen, quietly = TRUE))
BiocManager::install(depen,update = FALSE)
}
The package is not yet on CRAN or Bioconductor. You can install it from Github:
if (!requireNamespace("TMEclassifier", quietly = TRUE))
devtools::install_github("LiaoWJLab/TMEclassifier")
#> Warning: 程辑包'tidyHeatmap'是用R版本4.2.3 来建造的
Library R packages
library(TMEclassifier)
data("eset_example1")
res<-tme_classifier(eset = t(eset_example1), method = "ensemble", scale = T)
#> Step-1: Expression data preprocessing...
#> >>> There are no missing values
#>
#> Step-2: TME deconvolution...
#> >>> This step was skipped, user can set parameter `tme_deconvolution` to TRUE or provide TME data to realize prediction.
#>
#> Step-3: Predicting TME phenotypes...
#> >>>-- Scaling data...
#> >>>--- Ensemble Model was used to predict TME phenotypes...
#> [17:26:58] WARNING: amalgamation/../src/learner.cc:1040:
#> If you are loading a serialized model (like pickle in Python, RDS in R) generated by
#> older XGBoost, please export the model by calling `Booster.save_model` from that version
#> first, then load it back in current version. See:
#>
#> https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
#>
#> for more details about differences between saving model and serializing.
#>
#> [17:26:58] WARNING: amalgamation/../src/learner.cc:749: Found JSON model saved before XGBoost 1.6, please save the model using current version again. The support for old JSON model will be discontinued in XGBoost 2.3.
#>
#> >>>--- DONE!
head(res)
#> ID IE IS IA TMEcluster
#> 1 GSM1523727 0.14378383 0.09860092 0.75761525 IA
#> 2 GSM1523728 0.00769956 0.10048409 0.89181635 IA
#> 3 GSM1523729 0.86870675 0.10316410 0.02812915 IE
#> 4 GSM1523744 0.04996065 0.06216853 0.88787082 IA
#> 5 GSM1523745 0.05508487 0.81613011 0.12878502 IS
#> 6 GSM1523746 0.56659350 0.38249992 0.05090658 IE
table(res$TMEcluster)
#>
#> IA IE IS
#> 108 93 99
Functions applied to visualization were depends on the IOBR R package. Users can install it from Github:
if (!requireNamespace("IOBR", quietly = TRUE))
devtools::install_github("IOBR/IOBR")
library(IOBR)
Combining TMEcluster data and phenotype data.
data("pdata_example")
input<-inner_join(res, pdata_example, by = "ID")
input[1:5, 1:8]
#> ID IE IS IA TMEcluster ProjectID Technology
#> 1 GSM1523727 0.14378383 0.09860092 0.75761525 IA GSE62254 Affymetrix
#> 2 GSM1523728 0.00769956 0.10048409 0.89181635 IA GSE62254 Affymetrix
#> 3 GSM1523729 0.86870675 0.10316410 0.02812915 IE GSE62254 Affymetrix
#> 4 GSM1523744 0.04996065 0.06216853 0.88787082 IA GSE62254 Affymetrix
#> 5 GSM1523745 0.05508487 0.81613011 0.12878502 IS GSE62254 Affymetrix
#> platform
#> 1 HG-U133_Plus_2
#> 2 HG-U133_Plus_2
#> 3 HG-U133_Plus_2
#> 4 HG-U133_Plus_2
#> 5 HG-U133_Plus_2
Box plot
cols<- c('#fc0d3a','#ffbe0b','#2692a4')
p1<-sig_box(data = input, signature = "TMEscore", variable = "TMEcluster", cols = cols, hjust = 0.5)
#> # A tibble: 3 × 8
#> .y. group1 group2 p p.adj p.format p.signif method
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
#> 1 signature IA IE 3.66e-24 1.10e-23 < 2e-16 **** Wilcoxon
#> 2 signature IA IS 1.18e-17 2.40e-17 < 2e-16 **** Wilcoxon
#> 3 signature IE IS 9.44e- 6 9.40e- 6 9.4e-06 **** Wilcoxon
#> Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
#> Warning: Removed 1 rows containing non-finite values (`stat_signif()`).
#> Warning: Removed 1 rows containing non-finite values (`stat_compare_means()`).
p2<-sig_box(data = input, signature = "T.cells.CD8", variable = "TMEcluster", cols = cols, hjust = 0.5)
#> # A tibble: 3 × 8
#> .y. group1 group2 p p.adj p.format p.signif method
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
#> 1 signature IA IE 1.06e- 9 2.10e- 9 1.1e-09 **** Wilcoxon
#> 2 signature IA IS 7.54e-18 2.3 e-17 < 2e-16 **** Wilcoxon
#> 3 signature IE IS 1.09e- 3 1.1 e- 3 0.0011 ** Wilcoxon
KM-plot
library(survminer)
p3<-surv_cluster(input_pdata = input,
target_group = "TMEcluster",
time = "OS_time",
status = "OS_status",
project = "ACRG",
cols = c('#fc0d3a','#ffbe0b','#2692a4'),
save_path = paste0("./man/figures"))
#> IA IE IS
#> 108 93 99
Distribution of TMEcluster
and molecular subtypes
# install.package("remotes") #In case you have not installed it.
if (!requireNamespace("ggpie", quietly = TRUE))
remotes::install_github("showteeth/ggpie")
library(ggpie)
p4<-ggdonut(data = input, group_key = "TMEcluster", count_type = "full",
label_info = "ratio", label_type = "circle", label_split = NULL,
label_size = 5, label_pos = "in", donut.label.size = 4)+
scale_fill_manual(values = cols)
p5<-ggdonut(data = input, group_key = "Subtype", count_type = "full",
label_info = "ratio", label_type = "circle", label_split = NULL,
label_size = 5, label_pos = "in", donut.label.size = 4)+
scale_fill_manual(values = palettes(palette = "nrc", show_col = FALSE, show_message = FALSE))
#########################################
p6<-ggnestedpie(data = input,
group_key = c("TMEcluster", "Subtype"),
count_type = "full",
inner_label_info = "ratio",
inner_label_split = NULL,
inner_labal_threshold = 5,
inner_label_size = 3,
outer_label_type = "circle",
outer_label_size = 5,
outer_label_pos = "in",
outer_label_info = "count")+
scale_fill_manual(values = cols)
Combination of plots
if (!requireNamespace("patchwork", quietly = TRUE))
install.packages("patchwork")
library(patchwork)
p<-(p1|p2|p3)/(p4|p5|p6)
p + plot_annotation(tag_levels = 'A')
#> Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
#> Warning: Removed 1 rows containing non-finite values (`stat_signif()`).
#> Warning: Removed 1 rows containing non-finite values (`stat_compare_means()`).
1.Zeng D, Yu Y, Qiu W, Mao Q, …, Zhang K, Liao W; Tumor microenvironment immunotyping heterogeneity reveals distinct molecular mechanisms to clinical immunotherapy applications in gastric cancer. (2023) Under Review.
2.Zeng D, Li M, …, Liao W; Tumor microenvironment characterization in gastric cancer identifies prognostic and imunotherapeutically relevant gene signatures. Cancer Immunology Research, 2019, 7(5), 737-750. DOI: 10.1158/2326-6066.CIR-18-0436, PMID: 30842092
3.Zeng D, Ye Z, Sheng R, Yu G, Xiong Y, …, Liao W; IOBR: Multi-omics Immuno-Oncology Biological Research to decode tumor microenvironment and signatures. Frontiers in Immunology, 2021, 12:687975. DOI: 10.3389/fimmu.2021.687975, PMID: 34276676
Please report bugs to the Github issues page
E-mail any questions to [email protected]