-
Notifications
You must be signed in to change notification settings - Fork 3.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add MNIST DALI example, update README.md * Fix PEP8 warnings * reformatted using black * add mnist_dali to test_examples.py * Add documentation as docstrings * add nvidia-pyindex and nvidia-dali-cuda100 * replace nvidia-pyindex with --extra-index-url * mark mnist_dali test as Linux and GPU only * adjust CUDA docker and examples.txt, fix import error in test_examples.py * adjust the GPU check * Exit when DALI is not available * remove requirements-examples.txt and DALI pip install * Refactored example, moved to new logging api, added runtime check for test and dali script * Patch to reflect the mnist example module * add req. * Apply suggestions from code review * Removed requirement as it breaks CPU install, added note in README to install DALI * add DALI to Drone * test examples * Apply suggestions from code review * imports * ABC * cuda * cuda * pip DALI * Move build into init function Co-authored-by: SeanNaren <[email protected]> Co-authored-by: Jirka Borovec <[email protected]> Co-authored-by: Jirka Borovec <[email protected]> Co-authored-by: Sean Naren <[email protected]>
- Loading branch information
Showing
5 changed files
with
249 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
# Copyright The PyTorch Lightning team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from abc import ABC | ||
from argparse import ArgumentParser | ||
from random import shuffle | ||
from warnings import warn | ||
|
||
import numpy as np | ||
import torch | ||
from torch.nn import functional as F | ||
from torch.utils.data import random_split | ||
|
||
import pytorch_lightning as pl | ||
|
||
try: | ||
from torchvision.datasets.mnist import MNIST | ||
from torchvision import transforms | ||
except Exception: | ||
from tests.base.datasets import MNIST | ||
|
||
try: | ||
import nvidia.dali.ops as ops | ||
import nvidia.dali.types as types | ||
from nvidia.dali.pipeline import Pipeline | ||
from nvidia.dali.plugin.pytorch import DALIClassificationIterator | ||
except (ImportError, ModuleNotFoundError): | ||
warn('NVIDIA DALI is not available') | ||
ops, types, Pipeline, DALIClassificationIterator = ..., ..., ABC, ABC | ||
|
||
|
||
class ExternalMNISTInputIterator(object): | ||
""" | ||
This iterator class wraps torchvision's MNIST dataset and returns the images and labels in batches | ||
""" | ||
|
||
def __init__(self, mnist_ds, batch_size): | ||
self.batch_size = batch_size | ||
self.mnist_ds = mnist_ds | ||
self.indices = list(range(len(self.mnist_ds))) | ||
shuffle(self.indices) | ||
|
||
def __iter__(self): | ||
self.i = 0 | ||
self.n = len(self.mnist_ds) | ||
return self | ||
|
||
def __next__(self): | ||
batch = [] | ||
labels = [] | ||
for _ in range(self.batch_size): | ||
index = self.indices[self.i] | ||
img, label = self.mnist_ds[index] | ||
batch.append(img.numpy()) | ||
labels.append(np.array([label], dtype=np.uint8)) | ||
self.i = (self.i + 1) % self.n | ||
return (batch, labels) | ||
|
||
|
||
class ExternalSourcePipeline(Pipeline): | ||
""" | ||
This DALI pipeline class just contains the MNIST iterator | ||
""" | ||
|
||
def __init__(self, batch_size, eii, num_threads, device_id): | ||
super(ExternalSourcePipeline, self).__init__(batch_size, num_threads, device_id, seed=12) | ||
self.source = ops.ExternalSource(source=eii, num_outputs=2) | ||
self.build() | ||
|
||
def define_graph(self): | ||
images, labels = self.source() | ||
return images, labels | ||
|
||
|
||
class DALIClassificationLoader(DALIClassificationIterator): | ||
""" | ||
This class extends DALI's original DALIClassificationIterator with the __len__() function so that we can call len() on it | ||
""" | ||
|
||
def __init__( | ||
self, | ||
pipelines, | ||
size=-1, | ||
reader_name=None, | ||
auto_reset=False, | ||
fill_last_batch=True, | ||
dynamic_shape=False, | ||
last_batch_padded=False, | ||
): | ||
super().__init__(pipelines, size, reader_name, auto_reset, fill_last_batch, dynamic_shape, last_batch_padded) | ||
|
||
def __len__(self): | ||
batch_count = self._size // (self._num_gpus * self.batch_size) | ||
last_batch = 1 if self._fill_last_batch else 0 | ||
return batch_count + last_batch | ||
|
||
|
||
class LitClassifier(pl.LightningModule): | ||
def __init__(self, hidden_dim=128, learning_rate=1e-3): | ||
super().__init__() | ||
self.save_hyperparameters() | ||
|
||
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim) | ||
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10) | ||
|
||
def forward(self, x): | ||
x = x.view(x.size(0), -1) | ||
x = torch.relu(self.l1(x)) | ||
x = torch.relu(self.l2(x)) | ||
return x | ||
|
||
def split_batch(self, batch): | ||
return batch[0]["data"], batch[0]["label"].squeeze().long() | ||
|
||
def training_step(self, batch, batch_idx): | ||
x, y = self.split_batch(batch) | ||
y_hat = self(x) | ||
loss = F.cross_entropy(y_hat, y) | ||
return loss | ||
|
||
def validation_step(self, batch, batch_idx): | ||
x, y = self.split_batch(batch) | ||
y_hat = self(x) | ||
loss = F.cross_entropy(y_hat, y) | ||
self.log('valid_loss', loss) | ||
|
||
def test_step(self, batch, batch_idx): | ||
x, y = self.split_batch(batch) | ||
y_hat = self(x) | ||
loss = F.cross_entropy(y_hat, y) | ||
self.log('test_loss', loss) | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) | ||
|
||
@staticmethod | ||
def add_model_specific_args(parent_parser): | ||
parser = ArgumentParser(parents=[parent_parser], add_help=False) | ||
parser.add_argument('--hidden_dim', type=int, default=128) | ||
parser.add_argument('--learning_rate', type=float, default=0.0001) | ||
return parser | ||
|
||
|
||
def cli_main(): | ||
pl.seed_everything(1234) | ||
|
||
# ------------ | ||
# args | ||
# ------------ | ||
parser = ArgumentParser() | ||
parser.add_argument('--batch_size', default=32, type=int) | ||
parser = pl.Trainer.add_argparse_args(parser) | ||
parser = LitClassifier.add_model_specific_args(parser) | ||
args = parser.parse_args() | ||
|
||
# ------------ | ||
# data | ||
# ------------ | ||
dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor()) | ||
mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor()) | ||
mnist_train, mnist_val = random_split(dataset, [55000, 5000]) | ||
|
||
eii_train = ExternalMNISTInputIterator(mnist_train, args.batch_size) | ||
eii_val = ExternalMNISTInputIterator(mnist_val, args.batch_size) | ||
eii_test = ExternalMNISTInputIterator(mnist_test, args.batch_size) | ||
|
||
pipe_train = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_train, num_threads=2, device_id=0) | ||
train_loader = DALIClassificationLoader(pipe_train, size=len(mnist_train), auto_reset=True, fill_last_batch=False) | ||
|
||
pipe_val = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_val, num_threads=2, device_id=0) | ||
val_loader = DALIClassificationLoader(pipe_val, size=len(mnist_val), auto_reset=True, fill_last_batch=False) | ||
|
||
pipe_test = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_test, num_threads=2, device_id=0) | ||
test_loader = DALIClassificationLoader(pipe_test, size=len(mnist_test), auto_reset=True, fill_last_batch=False) | ||
|
||
# ------------ | ||
# model | ||
# ------------ | ||
model = LitClassifier(args.hidden_dim, args.learning_rate) | ||
|
||
# ------------ | ||
# training | ||
# ------------ | ||
trainer = pl.Trainer.from_argparse_args(args) | ||
trainer.fit(model, train_loader, val_loader) | ||
|
||
# ------------ | ||
# testing | ||
# ------------ | ||
trainer.test(test_dataloaders=test_loader) | ||
|
||
|
||
if __name__ == "__main__": | ||
cli_main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,2 @@ | ||
torchvision>=0.4.1,<0.9.0 | ||
gym>=0.17.0 | ||
gym>=0.17.0 |