Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ref: part a of #3733 #3766

Merged
merged 2 commits into from
Oct 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion benchmarks/test_parity.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

@pytest.mark.parametrize('cls_model,max_diff', [
(ParityModuleRNN, 0.05),
(ParityModuleMNIST, 0.5)
(ParityModuleMNIST, 0.55)
])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_pytorch_parity(tmpdir, cls_model, max_diff):
Expand Down
3 changes: 2 additions & 1 deletion pl_examples/basic_examples/autoencoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@ def cli_main():
# ------------
# testing
# ------------
trainer.test(test_dataloaders=test_loader)
result = trainer.test(test_dataloaders=test_loader)
print(result)


if __name__ == '__main__':
Expand Down
9 changes: 6 additions & 3 deletions pytorch_lightning/accelerators/accelerator_connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,12 +81,11 @@ def on_trainer_init(

# override with environment flag
gpus = os.environ.get('PL_TRAINER_GPUS', gpus)
self.trainer.gpus = gpus

# for gpus allow int, string and gpu list
if auto_select_gpus and isinstance(gpus, int):
self.trainer.gpus = self.trainer.tuner.pick_multiple_gpus(gpus)
else:
self.trainer.gpus = gpus

self.trainer.data_parallel_device_ids = device_parser.parse_gpu_ids(self.trainer.gpus)
self.trainer.root_gpu = device_parser.determine_root_gpu_device(self.trainer.data_parallel_device_ids)
Expand Down Expand Up @@ -126,6 +125,9 @@ def on_trainer_init(
self.trainer.replace_sampler_ddp = replace_sampler_ddp

def select_accelerator(self):
if self.trainer.accelerator_backend is not None:
return self.trainer.accelerator_backend

# SLURM ddp
use_slurm_ddp = self.trainer.use_ddp and self.trainer.is_slurm_managing_tasks

Expand Down Expand Up @@ -294,7 +296,8 @@ def set_nvidia_flags(self, is_slurm_managing_tasks, data_parallel_device_ids):
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_str

# don't make this debug... this is good UX
rank_zero_info(f'CUDA_VISIBLE_DEVICES: [{os.environ["CUDA_VISIBLE_DEVICES"]}]')
devices = os.environ["CUDA_VISIBLE_DEVICES"]
log.info(f'LOCAL_RANK: {self.trainer.local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]')

def determine_local_rank(self):
if self.trainer.is_slurm_managing_tasks:
Expand Down
3 changes: 3 additions & 0 deletions pytorch_lightning/accelerators/base_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,9 @@ def _clip_gradients(self, optimizer):
def on_train_epoch_end(self):
pass

def on_train_end(self):
pass

def early_stopping_should_stop(self, pl_module):
return self.trainer.should_stop

Expand Down
12 changes: 9 additions & 3 deletions pytorch_lightning/accelerators/ddp_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,21 +91,25 @@ def __ddp_script_mode_setup(self):
# when the trainer script was called the device has already been scoped by the time
# code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone
# but forward the GPUs selected via environment variables
os.environ['PL_TRAINER_GPUS'] = ','.join([str(i) for i in self.trainer.data_parallel_device_ids])
os.environ['PL_IN_DDP_SUBPROCESS'] = '1'

if self.trainer.logger is not None:
os.environ['PL_EXP_VERSION'] = str(self.trainer.logger.version)

gpu_ids = os.environ.get('CUDA_VISIBLE_DEVICES', '')
if len(gpu_ids) == 1:
gpu_ids = f'{gpu_ids},'

num_gpus = max(1, len(gpu_ids.split(',')))

# set the flag for ddp scripts
os.environ['PL_TRAINER_GPUS'] = gpu_ids

os.environ['WORLD_SIZE'] = f'{num_gpus * self.trainer.num_nodes}'

self.trainer.interactive_ddp_procs = []
for local_rank in range(1, self.trainer.num_processes):
env_copy = os.environ.copy()
env_copy['LOCAL_RANK'] = f'{local_rank}'
env_copy['PL_DDP_PID'] = str(self.trainer.data_parallel_device_ids[local_rank])

# start process
# if hydra is available and initialized, make sure to set the cwd correctly
Expand Down Expand Up @@ -155,6 +159,8 @@ def model_to_device(self, model, process_idx, is_master):
available_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
gpu_idx = int(available_gpus[self.trainer.local_rank])

gpu_idx = int(os.environ.get('PL_DDP_PID', gpu_idx))

self.trainer.root_gpu = gpu_idx
torch.cuda.set_device(self.trainer.root_gpu)
model.cuda(self.trainer.root_gpu)
Expand Down
5 changes: 3 additions & 2 deletions pytorch_lightning/accelerators/ddp_base_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,8 @@ def test_step(self, args):
return output

def barrier(self, name: str = None):
torch_distrib.barrier()
if torch_distrib.is_initialized():
torch_distrib.barrier()

def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
Expand Down Expand Up @@ -132,7 +133,7 @@ def ddp_train_tmp(self, process_idx, mp_queue, model, is_master=False, proc_offs
self.trainer.call_setup_hook(model)

# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero:
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend}')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
Expand Down
14 changes: 8 additions & 6 deletions pytorch_lightning/core/lightning.py
Original file line number Diff line number Diff line change
Expand Up @@ -1029,12 +1029,14 @@ def init_ddp_connection(
)

torch_backend = "nccl" if self.trainer.on_gpu else "gloo"
log.info(
f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank+1}/{world_size}"
)
torch_distrib.init_process_group(
torch_backend, rank=global_rank, world_size=world_size
)

if not torch.distributed.is_initialized():
log.info(
f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}"
)
torch_distrib.init_process_group(
torch_backend, rank=global_rank, world_size=world_size
)

def configure_sync_batchnorm(self, model: "LightningModule") -> "LightningModule":
"""
Expand Down
5 changes: 4 additions & 1 deletion pytorch_lightning/trainer/connectors/logger_connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from pytorch_lightning.core import memory
from pytorch_lightning.loggers import TensorBoardLogger, LoggerCollection
Expand Down Expand Up @@ -40,10 +41,12 @@ def on_trainer_init(self, logger, log_save_interval, row_log_interval):

def configure_logger(self, logger):
if logger is True:
version = os.environ.get('PL_EXP_VERSION', self.trainer.slurm_job_id)

# default logger
self.trainer.logger = TensorBoardLogger(
save_dir=self.trainer.default_root_dir,
version=self.trainer.slurm_job_id,
version=version,
name='lightning_logs'
)
elif logger is False:
Expand Down
33 changes: 33 additions & 0 deletions tests/utilities/dist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import os
import subprocess
from subprocess import TimeoutExpired
import sys
from pathlib import Path

import pytorch_lightning


def call_training_script(module_file, cli_args, method, tmpdir, timeout=60):
file = Path(module_file.__file__).absolute()
cli_args = cli_args.split(' ') if cli_args else []
cli_args += ['--tmpdir', str(tmpdir)]
cli_args += ['--trainer_method', method]
command = [sys.executable, str(file)] + cli_args

# need to set the PYTHONPATH in case pytorch_lightning was not installed into the environment
env = os.environ.copy()
env['PYTHONPATH'] = f'{pytorch_lightning.__file__}:' + env.get('PYTHONPATH', '')

# for running in ddp mode, we need to lauch it's own process or pytest will get stuck
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)

try:
std, err = p.communicate(timeout=timeout)
err = str(err.decode("utf-8"))
if 'Exception' in err:
raise Exception(err)
except TimeoutExpired:
p.kill()
std, err = p.communicate()

return std, err