AttGAN-Cartoon
TIP Nov. 2019, arXiv Nov. 2017
Example of using repo. AttGAN-Tensorflow on a cartoon dataset. We make modifications to the files below to adapt the repo. AttGAN-Tensorflow to the cartoon dataset. Please use a diff tool to show the differences of these files from the original ones in AttGAN-Tensorflow, then you can find out what modifications we should make to AttGAN-Tensorflow for a custom dataset.
-
Environment
-
Python 3.6
-
TensorFlow 1.15
-
OpenCV, scikit-image, tqdm, oyaml
-
we recommend Anaconda or Miniconda, then you can create the AttGAN environment with commands below
conda create -n AttGAN python=3.6 source activate AttGAN conda install opencv scikit-image tqdm tensorflow-gpu=1.15 conda install -c conda-forge oyaml
-
NOTICE: if you create a new conda environment, remember to activate it before any other command
source activate AttGAN
-
-
Data Preparation
-
-
download cartoonset10k.tgz (move to ./data/cartoonset10k.tgz)
-
unzip and process the data
cd ./data tar zxvf cartoonset10k.tgz python prepare_dataset.py
-
-
-
Run AttGAN
-
training
CUDA_VISIBLE_DEVICES=0 \ python train.py \ --load_size 143 \ --crop_size 128 \ --model model_128 \ --experiment_name AttGAN_128
-
testing
-
single attribute editing (inversion)
CUDA_VISIBLE_DEVICES=0 \ python test.py \ --experiment_name AttGAN_128
-
multiple attribute editing (inversion) example
CUDA_VISIBLE_DEVICES=0 \ python test_multi.py \ --test_att_names face_color_0 hair_color_0 \ --experiment_name AttGAN_128
-
attribute sliding example
CUDA_VISIBLE_DEVICES=0 \ python test_slide.py \ --test_att_name face_color_0 \ --test_int_min -2 \ --test_int_max 2 \ --test_int_step 0.5 \ --experiment_name AttGAN_128
-
-
loss visualization
CUDA_VISIBLE_DEVICES='' \ tensorboard \ --logdir ./output/AttGAN_128/summaries \ --port 6006
-
convert trained model to .pb file
python to_pb.py --experiment_name AttGAN_128
-
If you find AttGAN useful in your research work, please consider citing:
@ARTICLE{8718508,
author={Z. {He} and W. {Zuo} and M. {Kan} and S. {Shan} and X. {Chen}},
journal={IEEE Transactions on Image Processing},
title={AttGAN: Facial Attribute Editing by Only Changing What You Want},
year={2019},
volume={28},
number={11},
pages={5464-5478},
keywords={Face;Facial features;Task analysis;Decoding;Image reconstruction;Hair;Gallium nitride;Facial attribute editing;attribute style manipulation;adversarial learning},
doi={10.1109/TIP.2019.2916751},
ISSN={1057-7149},
month={Nov},}