Skip to content
This repository has been archived by the owner on Dec 13, 2021. It is now read-only.

LynnHo/AttGAN-Cartoon-Tensorflow

Repository files navigation


Example of using repo. AttGAN-Tensorflow on a cartoon dataset. We make modifications to the files below to adapt the repo. AttGAN-Tensorflow to the cartoon dataset. Please use a diff tool to show the differences of these files from the original ones in AttGAN-Tensorflow, then you can find out what modifications we should make to AttGAN-Tensorflow for a custom dataset.


Usage

  • Environment

    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the AttGAN environment with commands below

      conda create -n AttGAN python=3.6
      
      source activate AttGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate AttGAN
  • Data Preparation

    • Cartoon Set

      • download cartoonset10k.tgz (move to ./data/cartoonset10k.tgz)

      • unzip and process the data

        cd ./data
        
        tar zxvf cartoonset10k.tgz
        
        python prepare_dataset.py
  • Run AttGAN

    • training

      CUDA_VISIBLE_DEVICES=0 \
      python train.py \
      --load_size 143 \
      --crop_size 128 \
      --model model_128 \
      --experiment_name AttGAN_128
    • testing

      • single attribute editing (inversion)

        CUDA_VISIBLE_DEVICES=0 \
        python test.py \
        --experiment_name AttGAN_128
      • multiple attribute editing (inversion) example

        CUDA_VISIBLE_DEVICES=0 \
        python test_multi.py \
        --test_att_names face_color_0 hair_color_0 \
        --experiment_name AttGAN_128
      • attribute sliding example

        CUDA_VISIBLE_DEVICES=0 \
        python test_slide.py \
        --test_att_name face_color_0 \
        --test_int_min -2 \
        --test_int_max 2 \
        --test_int_step 0.5 \
        --experiment_name AttGAN_128
    • loss visualization

      CUDA_VISIBLE_DEVICES='' \
      tensorboard \
      --logdir ./output/AttGAN_128/summaries \
      --port 6006
    • convert trained model to .pb file

      python to_pb.py --experiment_name AttGAN_128

Citation

If you find AttGAN useful in your research work, please consider citing:

@ARTICLE{8718508,
author={Z. {He} and W. {Zuo} and M. {Kan} and S. {Shan} and X. {Chen}},
journal={IEEE Transactions on Image Processing},
title={AttGAN: Facial Attribute Editing by Only Changing What You Want},
year={2019},
volume={28},
number={11},
pages={5464-5478},
keywords={Face;Facial features;Task analysis;Decoding;Image reconstruction;Hair;Gallium nitride;Facial attribute editing;attribute style manipulation;adversarial learning},
doi={10.1109/TIP.2019.2916751},
ISSN={1057-7149},
month={Nov},}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages