This repository has been archived by the owner on Dec 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
36 lines (29 loc) · 1.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import functools
import tensorflow as tf
import tensorflow.contrib.slim as slim
# ==============================================================================
# = operations =
# ==============================================================================
def tile_concat(a_list, b_list=[]):
# tile all elements of `b_list` and then concat `a_list + b_list` along the channel axis
# `a` shape: (N, H, W, C_a)
# `b` shape: can be (N, 1, 1, C_b) or (N, C_b)
a_list = list(a_list) if isinstance(a_list, (list, tuple)) else [a_list]
b_list = list(b_list) if isinstance(b_list, (list, tuple)) else [b_list]
for i, b in enumerate(b_list):
b = tf.reshape(b, [-1, 1, 1, b.shape[-1]])
b = tf.tile(b, [1, a_list[0].shape[1], a_list[0].shape[2], 1])
b_list[i] = b
return tf.concat(a_list + b_list, axis=-1)
# ==============================================================================
# = others =
# ==============================================================================
def get_norm_layer(norm, training, updates_collections=None):
if norm == 'none':
return lambda x: x
elif norm == 'batch_norm':
return functools.partial(slim.batch_norm, scale=True, is_training=training, updates_collections=updates_collections)
elif norm == 'instance_norm':
return slim.instance_norm
elif norm == 'layer_norm':
return slim.layer_norm