Skip to content

LyonDataViz/oddata-public

Repository files navigation

oddata-public

Repository for origin-destination datasets

  1. Create a directory with you your-project name

  2. Create a your-project.json file that describes your projet (see examples in other directories)

  3. Format your dataset into a CSV file, add link to this dataset in your-project.json

  4. Add link to your-project directory in the master file dataset.json (list of all datasets)

  5. Your dataset should appear in https://observablehq.com/d/188f3eb2bb17b279

The file dataset.json links to all those datasets

  • Each directory contains a dataset
  • A .json files in each of those directory describes the dataset (attributes, ..)
  • A .csv file contains the raw data

You may online change the dataset.json once.

Format of the .csv file

This file is a classical CSV file, preferably with commas (,) as separator. Each line represents one O/D trajectory. The column names are referenced in the data.json file.

Example (from random/random-data.csv:

time,group,x1,x2,y1,y2,group_x1,group_x2,group_y1,group_y2,distance,distance_category,orientation,hour,minute,second,year,month,day
Mon Jan  1 20:56:01 2018,2,752,542,899,30,3,2,0,4,894.0139819935704,long,S,20,56,1,2018,1,1
Mon Jan  1 21:41:05 2018,0,677,418,886,186,3,2,0,4,746.3785902610015,long,S,21,41,5,2018,1,1
Mon Jan  1 06:28:10 2018,2,225,380,53,562,1,1,4,2,532.0770620878145,medium,N,6,28,10,2018,1,1

Format of the data.json file

This data describes the attributes (columns) of the .csv file.

Complete example:

{
  "file": "random/random-data.csv",
  "name": "Random XY Data",
  "header": 1,
  "separator": ",",
  "meta": {
    "date": "start_time",
    "group": "group",
    "timeParse": "%c",
    "cumul": "distance"
  },
  "grids": [
    {
      "title": "random",
      "tree": [
        { "group": "orientation", "gridding": "grid", "padding": 5 },
        { "group": "start_time" }
      ]
    },
    {
      "title": "random-od",
      "tree": [
        {
          "group": "cell_group_destination",
          "gridding": "grid",
          "padding": 5
        },
        {
          "group": "start_time"
        }
      ]
    },
    {
      "title": "random-group-color",
      "tree": [
        { "group": "orientation", "gridding": "grid", "padding": 5 },
        { "group": "group", "gridding": "grid", "padding": 5 },
        { "group": "group" }
      ]
    }    
  ],
  "attributes": [
    {
      "name": "x1",
      "type": "quantitative"
    },
    {
      "name": "x2",
      "type": "quantitative"
    },
    {
      "name": "y1",
      "type": "quantitative"
    },
    {
      "name": "y2",
      "type": "quantitative"
    },
    {
      "name": "distance",
      "type": "quantitative"
    },
    {
      "name": "distance_category",
      "type": "categorical"
    },
    {
      "name": "orientation_4",
      "type": "categorical"
    },
    {
      "name": "start_time",
      "type": "categorical"
    },
    {
      "name": "start_year",
      "type": "categorical"
    },
    {
      "name": "start_month",
      "type": "categorical"
    },
    {
      "name": "start_day",
      "type": "categorical"
    },
    {
      "name": "start_hour",
      "type": "categorical"
    },
    {
      "name": "start_minute",
      "type": "categorical"
    },
    {
      "name": "start_second",
      "type": "categorical"
    },
    {
      "name": "end_time",
      "type": "categorical"
    },
    {
      "name": "end_year",
      "type": "categorical"
    },
    {
      "name": "end_month",
      "type": "categorical"
    },
    {
      "name": "end_day",
      "type": "categorical"
    },
    {
      "name": "end_hour",
      "type": "categorical"
    },
    {
      "name": "end_minute",
      "type": "categorical"
    },
    {
      "name": "end_second",
      "type": "categorical"
    },
    {
      "name": "duration",
      "type": "quantitative"
    },
    {
      "name": "speed",
      "type": "quantitative"
    },
    {
      "name": "speed_category",
      "type": "categorical"
    },
    {
      "name": "orientation_8",
      "type": "categorical"
    },
    {
      "name": "duration_category",
      "type": "categorical"
    },
    {
      "name": "cell_group_origin",
      "type": "categorical"
    },
    {
      "name": "cell_group_destination",
      "type": "categorical"
    },
    {
      "name": "bi_start_time",
      "type": "categorical"
    },
    {
      "name": "bi_start_year",
      "type": "categorical"
    },
    {
      "name": "bi_start_month",
      "type": "categorical"
    },
    {
      "name": "bi_start_day",
      "type": "categorical"
    },
    {
      "name": "bi_start_hour",
      "type": "categorical"
    },
    {
      "name": "bi_start_minute",
      "type": "categorical"
    },
    {
      "name": "bi_start_second",
      "type": "categorical"
    }
  ],
  "author": "Romain Vuillemot",
  "description": "Random data",
  "source": ""
}

The meta object describes the well-known data fields: origin and destination's coordinates, dates, groups…

The attributes object describes the secondary fields: duration, price, age… that will be used to color maps or for statistical analysis.

Dates must be formatted in a way that moment.js can parse. It is possible to specify the date format as a dateformat attribute.

Separator is, by default, the comma ",". It is passed to d3.dsv.

Header is unused (yet).

Author is the author or maintainer of the dataset.

Description describes the dataset.

Source is the source of the dataset.

Usage

This Observable notebook shows how to use this set of datasets in a unified manner.

About

Repository for public origin-destination datasets

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •