Skip to content

MalondaClement/pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

98 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Pipeline for semantic segmentation

Python PyTorch

This project has been developed during my internship at LISSI. The objective was to create a pipeline for semantic segmentation with python and pytorch.

1. Documentation

You can read the documentation here.

2. How to use the pipeline

git clone https://github.com/MalondaClement/pipeline.git

2.1 Training

2.1.1 Parameters for training

Before starting training it's possible to change training parameters using ARGS constructor in train.py script.

Parameters of the constructor :

  • Models name,
  • Dataset path,
  • Number of classes,
  • Type of labels the dataset used ("label", "csv" or "json") (depends of the dataset),
  • Batch size,
  • Number of epoch.

2.1.2 Start training

python3 train.py

1.3 Save directory

pipeline
└── save
    β”œβ”€β”€ model_name
    β”‚Β Β  β”œβ”€β”€ yyyy-mm-dd-id
    β”‚Β Β  β”‚   β”œβ”€β”€ best_weights.pth.tar
    β”‚Β Β  β”‚   β”œβ”€β”€ checkpoint.pth.tar
    β”‚   β”‚Β Β  └── learning_curves.png
    β”‚   └── yyyy-mm-dd-id
    β”‚Β Β  β”‚   β”œβ”€β”€ best_weights.pth.tar
    β”‚Β Β  β”‚   β”œβ”€β”€ checkpoint.pth.tar
    β”‚   β”‚Β Β  └── learning_curves.png
    └── model_name
        └── yyyy-mm-dd-id
            β”œβ”€β”€ best_weights.pth.tar
            β”œβ”€β”€ checkpoint.pth.tar
            └── learning_curves.png

2.2. Evaluation

python3 evaluation.py

2.3. Inference

python3 inference.py