-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathNeoPredPipe.py
527 lines (462 loc) · 25.9 KB
/
NeoPredPipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#!/usr/bin/env python
'''
@author: Ryan Schenck, [email protected]
Contributions from: Eszter Lakatos
'''
import sys
import os
import glob
import argparse
try:
import ConfigParser as configparser # for python 2
except:
import configparser # for python 3
import shutil
from collections import Counter
from vcf_manipulate import convert_to_annovar, annovar_annotation, get_coding_change,\
ReformatFasta, MakeTempFastas
from predict_binding import predict_neoantigens
from hla_preprocess import ConstructAlleles, ConstructAlleles_typeII, composeHLAFile, composeHLA2File, readInHLAwinners
from postprocessing import DigestIndSample, AppendDigestedEps
from process_expression import GetExpressionFiles
def Parser():
# get user variables
parser = argparse.ArgumentParser()
parser.add_argument("-E", "--epitopes", dest="epitopes", nargs='+', type=int, default=[8, 9, 10],
help="Epitope lengths for predictions. Default: 8 9 10")
parser.add_argument("-l", dest="cleanLog", default=True, action='store_false', help="Specifies whether to delete the ANNOVAR log file. Default: True. Note: Use for debugging.")
parser.add_argument("-d", dest="deleteInt", default=True, action='store_false', help="Specifies whether to delete intermediate files created by program. Default: True. Note: Set flag to resume job.")
parser.add_argument("-r", "--cleanrun", dest="makeitclean", default=False, action='store_true', help="Specify this alone with no other options to clean-up a run. Be careful that you mean to do this!!")
parser.add_argument('-p', "--preponly", dest="preponly", default=False, action='store_true',help="Prep files only without running neoantigen predictions. The prediction step takes the most time.")
parser.add_argument("--manualproc", dest="manualproc", default=False, action='store_true',help="Process vcf files into annovar-input format manually, to avoid issues from non 'genotype-calling' formats.")
parser.add_argument("--EL", dest="ELpred", default=False, action='store_true',
help="Flag to perform netMHCpan predictions with Eluted Ligand option (without the -BA flag). Please note that the output will NOT be compatible with downstream Recognition Potential analysis. Default=False (BA predictions)")
requiredNamed = parser.add_argument_group('Required arguments')
requiredNamed.add_argument("-I", dest="vcfdir", default=None, type=str,
help="Input vcf file directory location. Example: -I ./Example/input_vcfs/")
requiredNamed.add_argument("-H", dest="hlafile", default=None, type=str, help="HLA file for vcf patient samples OR directory with patient-specific directories from running POLYSOLVER (see Readme).")
requiredNamed.add_argument("-o", dest="OutputDir", default=None, type=str, help="Output Directory Path")
requiredNamed.add_argument("-n", dest="outName", default="AllSamples", type=str, help="Name of the output file for neoantigen predictions")
postProcess = parser.add_argument_group('Post Processing Options')
postProcess.add_argument("-pp", dest="postprocess", default=True, action='store_false', help="Flag to perform post processing. Default=True.")
postProcess.add_argument("-c", dest="colRegions", default=None, nargs='+',
help="Columns of regions within vcf that are not normal within a multiregion vcf file after the format field. Example: 0 is normal in test samples, tumor are the other columns. Program can handle different number of regions per vcf file.")
postProcess.add_argument("-a", dest="includeall", default=False, action='store_true', help="Flag to not filter neoantigen predictions and keep all regardless of prediction value.")
postProcess.add_argument("-m", dest="checkPeptides", default=False, action='store_true',
help="Specifies whether to perform check if predicted epitopes match any normal peptide. If set to True, output is added as a column to neoantigens file. Requires PeptideMatch specified in usr_paths.ini. Default=False")
postProcess.add_argument("-x", "--expression", dest="expression", default=None, type=str,
help="RNAseq expression quantification file(s), if specified, expression information is added to output tables.")
postProcess.add_argument("--expmulti", dest="expMultiregion", default=False, action='store_true',
help="Flag to specify if expression file(s) has information on multiple regions in multiple columns. Default=False.")
postProcess.add_argument("-t", dest="buildSumTable", default=True, action='store_false', help="Flag to turn off a neoantigen burden summary table. Default=True.")
Options = parser.parse_args() # main user args
Options.typeII = False
if Options.makeitclean:
CleanUp(Options)
sys.exit("Process Complete")
if not Options.vcfdir or not Options.hlafile or not Options.OutputDir:
parser.error("Some of the required arguments were not provided. Please check required arguments.")
return(Options)
def ConfigSectionMap(section, Config):
dict1 = {}
options = Config.options(section)
for option in options:
try:
dict1[option] = Config.get(section, option)
if dict1[option] == -1:
print("skip: %s" % option)
except:
print("exception on %s!" % option)
dict1[option] = None
return dict1
class Sample():
'''
Use this to run and execute the pipeline on an individual patient vcf file.
'''
def __init__(self, FilePath, patID, vcfFile, hla, annovar, netmhcpan, pepmatchPaths, Options):
self.patID = patID
self.vcfFile = vcfFile
self.hla = hla
self.avReadyFile=None
self.annotationReady=None
self.fastaChange=None
self.fastaChangeFormat=None
self.peptideFastas = None # Will be a dictionary of tmp files for predictions
self.epcalls = None
self.digestedEpitopes = None
self.digestedEpitopesIndels = None
self.appendedEpitopes = None
self.appendedEpitopesIndels = None
self.regionsPresent = None
self.regionsPresentIndels = None
self.ProcessAnnovar(FilePath, annovar, Options)
if Options.typeII:
self.hlasnormed = ConstructAlleles_typeII(self.hla, FilePath, self.patID)
else:
self.hlasnormed = ConstructAlleles(self.hla, FilePath, self.patID)
if Options.preponly:
print("INFO: Input files prepared and completed for %s" % (self.patID))
else:
self.callNeoantigens(FilePath, netmhcpan, Options)
if Options.postprocess:
self.digestIndSample(FilePath, pepmatchPaths, Options)
def ProcessAnnovar(self, FilePath, annovar, Options):
# Prepare ANNOVAR input files
if os.path.isfile(Options.OutputDir+"avready/"+self.patID+'.avinput'):
print("INFO: ANNOVAR Ready files for %s already present."%(self.patID))
self.avReadyFile = Options.OutputDir+"avready/"+self.patID+'.avinput'
else:
self.avReadyFile = convert_to_annovar(Options.OutputDir, self.patID, self.vcfFile, annovar, Options.manualproc)
# Prepare ANNOVAR annotated input files
if os.path.isfile(Options.OutputDir+"avannotated/"+self.patID+'.avannotated.exonic_variant_function'):
print("INFO: ANNOVAR Annotation files for %s already present." % (self.patID))
self.annotationReady = Options.OutputDir+"avannotated/"+self.patID+'.avannotated.exonic_variant_function'
else:
self.annotationReady = annovar_annotation(Options.OutputDir, self.patID, self.avReadyFile, annovar)
# Get Coding Change
if os.path.isfile(Options.OutputDir+"fastaFiles/"+self.patID+'.fasta'):
print("INFO: Coding change fasta files for %s already present." % (self.patID))
self.fastaChange = Options.OutputDir+"fastaFiles/"+self.patID+'.fasta'
else:
self.fastaChange = get_coding_change(Options.OutputDir, self.patID, self.annotationReady, annovar)
if os.path.isfile(Options.OutputDir+"fastaFiles/"+self.patID+'.reformat.fasta'):
print("INFO: Coding change fasta files %s has already been reformatted." % (self.patID))
self.fastaChangeFormat = Options.OutputDir+"fastaFiles/"+self.patID+'.reformat.fasta'
else:
self.fastaChangeFormat = ReformatFasta(self.fastaChange)
def callNeoantigens(self, FilePath, netmhcpan, Options):
# Make tmp files.
i = 0
pepTmp = {}
for n in Options.epitopes:
if os.path.isfile(Options.OutputDir+"fastaFiles/%s.tmp.%s.fasta"%(self.patID,n)) and os.path.isfile("fastaFiles/%s.tmp.%s.fasta"%(self.patID,str(n)+'.Indels')):
pepTmp.update({n:Options.OutputDir+"fastaFiles/%s.tmp.%s.fasta"%(self.patID,n)})
pepTmp.update({str(n)+'.Indels':Options.OutputDir+"fastaFiles/%s.tmp.%s.fasta"%(self.patID,str(n)+'.Indels')})
print("INFO: Tmp fasta files %s has already been created for netMHCpan length %s." % (self.patID,n))
i+=1
if i == len(Options.epitopes):
self.peptideFastas = pepTmp
if i != len(Options.epitopes):
self.peptideFastas = MakeTempFastas(self.fastaChangeFormat, Options.epitopes)
# Predict neoantigens
i = 0
epTmp = []
for n in Options.epitopes:
if os.path.isfile(Options.OutputDir+"tmp/%s.epitopes.%s.txt" % (self.patID,n)):
epTmp.append(Options.OutputDir+"tmp/%s.epitopes.%s.txt" % (self.patID,n))
i += 1
print("INFO: Epitope prediction files %s have already been created for netMHCpan length %s." % (self.patID,n))
if os.path.isfile(Options.OutputDir+"tmp/%s.epitopes.%s.txt" % (self.patID,str(n)+'.Indels')):
epTmp.append(Options.OutputDir+"tmp/%s.epitopes.%s.txt" % (self.patID,str(n)+'.Indels'))
i += 1
print("INFO: Epitope prediction files %s have already been created for netMHCpan length %s." % (self.patID,str(n)+'.Indels'))
if i == 2*len(Options.epitopes):
self.epcalls = epTmp
if i!=2*len(Options.epitopes):
if i>0:
os.system("rm "+Options.OutputDir+"tmp/"+self.patID+".epitopes.*.txt") # if doing predictions, remove existing files to ensure double predicting happens
self.epcalls = predict_neoantigens(Options.OutputDir, self.patID, self.peptideFastas, self.hlasnormed , Options.epitopes, netmhcpan, Options)
def digestIndSample(self, FilePath, pmPaths, Options):
if self.epcalls != []:
toDigestSNVs = filter(lambda y: 'Indels.txt' not in y, self.epcalls)
toDigestIndels = filter(lambda y: 'Indels.txt' in y, self.epcalls)
if toDigestSNVs != []:
self.digestedEpitopes = DigestIndSample(toDigestSNVs, self.patID, Options, pmPaths)
self.appendedEpitopes, self.regionsPresent = AppendDigestedEps(FilePath, self.digestedEpitopes, self.patID, self.annotationReady, self.avReadyFile, Options)
else:
self.appendedEpitopes = None
self.regionsPresent = None
if toDigestIndels != []:
self.digestedEpitopesIndels = DigestIndSample(toDigestIndels, self.patID, Options, pmPaths, True)
self.appendedEpitopesIndels, self.regionsPresentIndels = AppendDigestedEps(FilePath, self.digestedEpitopesIndels, self.patID, self.annotationReady, self.avReadyFile, Options)
else:
self.appendedEpitopesIndels = None
self.regionsPresentIndels = None
def PrepClasses(FilePath, Options):
if Options.vcfdir[len(Options.vcfdir)-1] != "/":
Options.vcfdir+="/"
getFiles = Options.vcfdir + "*.vcf"
allFiles = glob.glob(getFiles)
if all([os.path.isfile(f) for f in allFiles]):
pass
else:
getFiles = Options.vcfdir + "/*.vcf"
allFiles = glob.glob(getFiles)
if all([os.path.isfile(f) for f in allFiles]):
pass
else:
sys.exit("Unable to locate vcf files.")
hlas = dict()
if os.path.isfile(Options.hlafile):
with open(Options.hlafile, 'r') as hlaFile:
lines = hlaFile.readlines()
for line in lines:
line = line.rstrip().split("\t")
pat = line[0]
del line[0]
hlas.update({pat: line})
elif os.path.isdir(Options.hlafile):
if Options.typeII:
hlas = composeHLA2File(Options.hlafile)
else:
hlas = composeHLAFile(Options.hlafile)
else:
sys.exit("Unable to locate HLA file or directory.")
if not os.path.exists(Options.OutputDir):
os.mkdir(Options.OutputDir)
try:
os.mkdir(Options.OutputDir+'avready')
except OSError as e:
print("INFO: Proper directory already exists. Continue.")
try:
os.mkdir(Options.OutputDir+'avannotated')
except OSError as e:
print("INFO: Proper directory already exists. Continue.")
try:
os.mkdir(Options.OutputDir+'fastaFiles')
except OSError as e:
print("INFO: Proper directory already exists. Continue.")
try:
os.mkdir(Options.OutputDir+'tmp')
except OSError as e:
print("INFO: Proper directory already exists. Continue.")
return(allFiles, hlas)
def FinalOut(sampleClasses, Options, indelProcess=False):
if indelProcess:
epitopesToProcess = 'appendedEpitopesIndels' #Process this special set of predicted epitopes
regionsToProcess = 'regionsPresentIndels'
filePostFix = '.neoantigens.Indels'
else:
epitopesToProcess = 'appendedEpitopes'
regionsToProcess = 'regionsPresent'
filePostFix = '.neoantigens'
if Options.includeall:
outFile = Options.OutputDir + Options.outName + filePostFix + ".unfiltered.txt"
else:
outFile = Options.OutputDir + Options.outName + filePostFix + ".txt"
outTable = Options.OutputDir + Options.outName + filePostFix + ".summarytable.txt"
summaryTable = []
with open(outFile, 'w') as pentultimateFile:
if Options.includeall==True:
for i in range(0, len(sampleClasses)):
appendedEps = getattr(sampleClasses[i],epitopesToProcess)
if appendedEps is not None:
pentultimateFile.write('\n'.join(appendedEps) + '\n')
for line in appendedEps:
if '<=' in line:
summaryTable.append(line)
else:
for i in range(0, len(sampleClasses)):
appendedEps = getattr(sampleClasses[i],epitopesToProcess)
if appendedEps is not None:
for line in appendedEps:
if '<=' in line:
pentultimateFile.write(line+"\n")
summaryTable.append(line)
summaries = {}
for z in range(0, len(sampleClasses)):
appendedEps = getattr(sampleClasses[z],epitopesToProcess)
if appendedEps is not None:
total_count=0
wbind=0
sbind=0
if Options.colRegions is not None:
# Prep counts for multiregion data
region_count=[0 for k in Options.colRegions*3]
# Final Counters for each subtype of neoantigen
clonal=0
Wclonal = 0
Sclonal = 0
subclonal=0
Wsubclonal = 0
Ssubclonal=0
shared=0
Wshared = 0
Sshared = 0
regionsPesent = getattr(sampleClasses[z],regionsToProcess)
overallRegions = Counter(regionsPesent)
for line in appendedEps:
# Counter to assess clonality of neoantigen
r = 0
rw = 0
rs = 0
if '<=' in line and not (Options.checkPeptides and line[-1]=='0'):
total_count+=1
if Options.colRegions is not None:
regions = [int(g) for g in line.split('\t')[1:len(Options.colRegions) + 1]]
for s in range(0,len(Options.colRegions)):
if regions[s] > 0:
region_count[s*3]+=1
r +=1
if "<=\tWB" in line or "<=WB" in line:
wbind +=1
if Options.colRegions is not None:
regions = [int(g) for g in line.split('\t')[1:len(Options.colRegions) + 1]]
for s in range(0, len(Options.colRegions)):
if regions[s] > 0:
region_count[(s * 3)+1] += 1
rw +=1
elif "<=\tSB" in line or "<=SB" in line:
sbind+=1
if Options.colRegions is not None:
regions = [int(g) for g in line.split('\t')[1:len(Options.colRegions) + 1]]
for s in range(0, len(Options.colRegions)):
if regions[s] > 0:
region_count[(s * 3)+2] += 1
rs+=1
if Options.colRegions is not None:
if r == overallRegions['+']:
clonal += 1
elif r == 1:
subclonal += 1
elif r > 1 and overallRegions['+'] > 2:
shared += 1
elif r==0:
pass
else:
sys.exit('Error with mutliregion counter.')
if rw == overallRegions['+']:
Wclonal += 1
elif rw == 1:
Wsubclonal += 1
elif rw > 1 and overallRegions['+'] > 2:
Wshared += 1
elif rw==0:
pass
else:
sys.exit('Error with mutliregion counter.')
if rs == overallRegions['+']:
Sclonal += 1
elif rs == 1:
Ssubclonal += 1
elif rs > 1 and overallRegions['+'] > 2:
Sshared += 1
elif rs==0:
pass
else:
sys.exit('Error with mutliregion counter.')
if Options.colRegions is not None:
summaries.update({sampleClasses[z].patID:{'Total':total_count,'WB':wbind,'SB':sbind,
'Regions':region_count, 'Clonal':clonal, 'Subclonal':subclonal, 'Shared':shared,
'clonal_w':Wclonal, 'clonal_s':Sclonal, 'subclonal_w':Wsubclonal, 'subclonal_s':Ssubclonal,
'shared_w':Wshared,'shared_s':Sshared}})
else:
summaries.update({sampleClasses[z].patID:{'Total':total_count,'WB':wbind,'SB':sbind}})
with open(outTable, 'w') as finalFile:
if Options.colRegions is not None:
header = ['Sample','Total','Total_WB','Total_SB','\t'.join(["Total_Region_%s"%(n) for n in range(0,len(Options.colRegions))]),
'\t'.join(["Total_WB_Region_%s" % (n) for n in range(0, len(Options.colRegions))]), '\t'.join(["Total_SB_Region_%s"%(n) for n in range(0,len(Options.colRegions))]),
'Clonal','Subclonal','Shared','Clonal_WB','Clonal_SB','Subclonal_WB','Subclonal_SB','Shared_WB','Shared_SB']
finalFile.write('\t'.join(header) + '\n')
for patient in summaries:
line = [patient, summaries[patient]['Total'], summaries[patient]['WB'], summaries[patient]['SB'],
'\t'.join([str(summaries[patient]['Regions'][i]) for i in range(0,len(region_count), 3)]), '\t'.join([str(summaries[patient]['Regions'][i]) for i in range(1,len(region_count), 3)]),
'\t'.join([str(summaries[patient]['Regions'][i]) for i in range(2,len(region_count), 3)]),
summaries[patient]['Clonal'],summaries[patient]['Subclonal'],summaries[patient]['Shared'],
summaries[patient]['clonal_w'],summaries[patient]['clonal_s'],summaries[patient]['subclonal_w'],
summaries[patient]['subclonal_s'],summaries[patient]['shared_w'],summaries[patient]['shared_s']
]
line = [str(i) for i in line]
finalFile.write('\t'.join(line) + '\n')
else:
header = ['Sample','Total','Total_WB','Total_SB']
finalFile.write('\t'.join(header) + '\n')
for patient in summaries:
line = [patient, summaries[patient]['Total'], summaries[patient]['WB'], summaries[patient]['SB']]
line = [str(i) for i in line]
finalFile.write('\t'.join(line) + '\n')
print("INFO: Summary Tables Complete.")
def CleanUp(Options):
if Options.cleanLog or Options.makeitclean:
try:
os.remove(Options.OutputDir+'logforannovarNeoPredPipe.txt')
except OSError:
pass
try:
os.remove(Options.OutputDir+'logForPeptideMatch.tmp')
except OSError:
pass
if (Options.deleteInt or Options.makeitclean) and not Options.preponly:
try:
shutil.rmtree(Options.OutputDir+"avready/")
except OSError as e:
print("ERROR: Unable to clean intermediary files.")
print(e)
try:
shutil.rmtree(Options.OutputDir+"avannotated/")
except OSError as e:
print("ERROR: Unable to clean intermediary files.")
print(e)
try:
shutil.rmtree(Options.OutputDir+"fastaFiles/")
except OSError as e:
print("ERROR: Unable to clean intermediary files.")
print(e)
try:
shutil.rmtree(Options.OutputDir+"tmp/")
except OSError as e:
print("ERROR: Unable to clean tmp files.")
print(e)
def main():
# Pull information about usr system files
localpath = os.path.abspath(__file__).replace('NeoPredPipe.py', '') # path to scripts working directory
Options = Parser()
Config = configparser.ConfigParser()
Config.read(localpath + "usr_paths.ini")
annPaths = ConfigSectionMap(Config.sections()[0], Config) # get annovar script paths
annPaths['build'] = annPaths['gene_table'].split('/')[-1].split('_')[0] # get build version from name of gene table (hg19/hg38_refGene...)
annPaths['gene_model'] = annPaths['gene_table'].split('/')[-1].split('_')[1].replace(".txt","") # get gene model from X_somethingGene.txt
if annPaths['build'] not in ['hg19', 'hg38', 'hg18', 'mm10']:
print("WARNING: Unexpected genome build detected in annovar reference files: %s. Please check path for 'gene_table'. Build hg19 is used for analysis."%(annPaths['build']))
annPaths['build'] = 'hg19'
else:
print("INFO: Annovar reference files of build %s were given, using this build for all analysis."%(annPaths['build']))
netMHCpanPaths = ConfigSectionMap(Config.sections()[1], Config) # get netmhcpan paths
if netMHCpanPaths['netmhcpan'].rstrip('\n').split('/')[-1]=='netMHCIIpan': #set typeII if netMHCIIpan is supplied instead of netMHCpan
Options.typeII = True
try:
pepmatchPaths = ConfigSectionMap(Config.sections()[2], Config) # get PeptideMatch paths
except IndexError as e:
pepmatchPaths = None
#Make sure outputdir ends with '/'
if Options.OutputDir[len(Options.OutputDir)-1]=="/":
pass
else:
Options.OutputDir = Options.OutputDir + "/"
#Check if PeptideMatch paths are provided, ignore -m if not
if Options.checkPeptides and pepmatchPaths is None:
print("WARNING: You chose to perform peptide match checking for epitopes, but did not provide paths for PeptideMatch. The pipeline will ignore the -m flag")
Options.checkPeptides = False
print("INFO: Begin.")
allFiles, hlas = PrepClasses(localpath, Options)
# Eliminate header line and tailing empty rows
hlas.pop('', None)
hlas.pop('Patient', None)
# Expression related options
if Options.expression is not None:
Options.allExpFiles = GetExpressionFiles(Options)
# Check VCF and HLA
assert len(allFiles) > 0, "No input vcf files detected. Perhaps they are compressed?"
if len(allFiles)>len(hlas.keys()):
print("WARNING: Less samples are detected in HLA file than in VCF folder. Only samples included in HLA file will be processed.")
# Prepare samples
t = []
for patFile in allFiles:
patname = patFile.replace('.vcf', '').split("/")[len(patFile.replace('.vcf', '').split("/")) - 1]
if patname in hlas.keys():
t.append(Sample(localpath, patname, patFile, hlas[patname], annPaths, netMHCpanPaths, pepmatchPaths, Options))
if len(t)<len(hlas.keys()):
print("WARNING: Not all samples in HLA file have matching VCF files. Please check that HLA file is tab-separated and sample names match exactly with .vcf file names. Only matching samples will be included in analysis and output tables.")
if Options.preponly:
print("INFO: Complete.")
print("INFO: Preprocessed intermediary files are in avready, avannotated and fastaFiles. If you wish to perform epitope prediction, run the pipeline again without the --preponly flag, intermediary files will be automatically detected.")
else:
if Options.postprocess:
FinalOut(t, Options)
FinalOut(t, Options, True)
print("INFO: Complete")
else:
print("INFO: Complete")
CleanUp(Options)
if __name__=="__main__":
main()