Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Arithmetic refactor #766

Closed
wants to merge 25 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
17e6ed1
test_zero_arithmetic_expr
mmatera May 26, 2023
5110739
improve positivity test for powers. Handle constants
mmatera May 26, 2023
8e7e774
adding tests. fix typo
mmatera May 26, 2023
773aee0
Pi is a Numpy constant
mmatera May 26, 2023
e8b90f8
arithmetic refactor
mmatera May 26, 2023
757011f
flake8 mathics.eval.parts
mmatera May 26, 2023
d5be5ae
Merge branch 'arithmetic_test_zero' into arithmetic_refactor
mmatera May 26, 2023
7b6f650
Pi is a Numpy constant
mmatera May 26, 2023
f39e64e
Merge branch 'arithmetic_test_zero' into arithmetic_refactor
mmatera May 26, 2023
f44dc77
adding session.parse method, which is handy for low-level tests. remo…
mmatera May 26, 2023
2481118
Pi is a Numpy constant
mmatera May 26, 2023
d9a961a
Merge branch 'tidy_up_stuff' into arithmetic_test_zero
mmatera May 26, 2023
4cf85ac
Merge branch 'arithmetic_test_zero' into arithmetic_refactor
mmatera May 26, 2023
279ae2c
Merge branch 'master' into arithmetic_refactor
mmatera May 27, 2023
a0b5310
flake8
mmatera May 27, 2023
74e5823
Merge branch 'master' into arithmetic_refactor
mmatera Jul 15, 2023
a2ada0b
Correct typo in error message pattern
rocky Jul 16, 2023
87316dc
RealAbs and RealSign
mmatera May 29, 2023
fc54766
Merge branch 'master' into RealAbs_and_RealSign
mmatera Jul 20, 2023
b3119c5
merge
mmatera Jul 20, 2023
4d8f5b1
tiny tweaks in documentation
mmatera Jul 21, 2023
c32daa2
Merge branch 'RealAbs_and_RealSign' into arithmetic_refactor
mmatera Jul 21, 2023
261ba42
merge
mmatera Jul 21, 2023
c16e3bc
remove duplicated
mmatera Jul 21, 2023
539a29b
Merge branch 'master' into arithmetic_refactor
mmatera Aug 3, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 63 additions & 22 deletions mathics/builtin/arithfns/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,10 @@

"""

from mathics.builtin.arithmetic import create_infix
import sympy

from mathics.builtin.arithmetic import _MPMathFunction, create_infix
from mathics.builtin.base import BinaryOperator, Builtin, PrefixOperator, SympyFunction
from mathics.core.atoms import (
Complex,
Integer,
Expand Down Expand Up @@ -45,7 +48,6 @@
Symbol,
SymbolDivide,
SymbolHoldForm,
SymbolNull,
SymbolPower,
SymbolTimes,
)
Expand All @@ -56,10 +58,17 @@
SymbolInfix,
SymbolLeft,
SymbolMinus,
SymbolOverflow,
SymbolPattern,
SymbolSequence,
)
from mathics.eval.arithmetic import eval_Plus, eval_Times
from mathics.eval.arithmetic import (
associate_powers,
eval_Exponential,
eval_Plus,
eval_Power_inexact,
eval_Power_number,
eval_Times,
)
from mathics.eval.nevaluator import eval_N
from mathics.eval.numerify import numerify

Expand Down Expand Up @@ -439,6 +448,8 @@ class Power(BinaryOperator, MPMathFunction):
rules = {
"Power[]": "1",
"Power[x_]": "x",
"Power[I,-1]": "-I",
"Power[-1, 1/2]": "I",
}

summary_text = "exponentiate"
Expand All @@ -447,15 +458,15 @@ class Power(BinaryOperator, MPMathFunction):
# Remember to up sympy doc link when this is corrected
sympy_name = "Pow"

def eval_exp(self, x, evaluation):
"Power[E, x]"
return eval_Exponential(x)

def eval_check(self, x, y, evaluation):
"Power[x_, y_]"

# Power uses MPMathFunction but does some error checking first
if isinstance(x, Number) and x.is_zero:
if isinstance(y, Number):
y_err = y
else:
y_err = eval_N(y, evaluation)
# if x is zero
if x.is_zero:
y_err = y if isinstance(y, Number) else eval_N(y, evaluation)
if isinstance(y_err, Number):
py_y = y_err.round_to_float(permit_complex=True).real
if py_y > 0:
Expand All @@ -469,17 +480,47 @@ def eval_check(self, x, y, evaluation):
evaluation.message(
"Power", "infy", Expression(SymbolPower, x, y_err)
)
return SymbolComplexInfinity
if isinstance(x, Complex) and x.real.is_zero:
yhalf = Expression(SymbolTimes, y, RationalOneHalf)
factor = self.eval(Expression(SymbolSequence, x.imag, y), evaluation)
return Expression(
SymbolTimes, factor, Expression(SymbolPower, IntegerM1, yhalf)
)

result = self.eval(Expression(SymbolSequence, x, y), evaluation)
if result is None or result != SymbolNull:
return result
return SymbolComplexInfinity

# If x and y are inexact numbers, use the numerical function

if x.is_inexact() and y.is_inexact():
try:
return eval_Power_inexact(x, y)
except OverflowError:
evaluation.message("General", "ovfl")
return Expression(SymbolOverflow)

# Tries to associate powers a^b^c-> a^(b*c)
assoc = associate_powers(x, y)
if not assoc.has_form("Power", 2):
return assoc

assoc = numerify(assoc, evaluation)
x, y = assoc.elements
# If x and y are numbers
if isinstance(x, Number) and isinstance(y, Number):
try:
return eval_Power_number(x, y)
except OverflowError:
evaluation.message("General", "ovfl")
return Expression(SymbolOverflow)

# if x or y are inexact, leave the expression
# as it is:
if x.is_inexact() or y.is_inexact():
return assoc

# Finally, try to convert to sympy
base_sp, exp_sp = x.to_sympy(), y.to_sympy()
if base_sp is None or exp_sp is None:
# If base or exp can not be converted to sympy,
# returns the result of applying the associative
# rule.
return assoc

result = from_sympy(sympy.Pow(base_sp, exp_sp))
return result.evaluate_elements(evaluation)


class Sqrt(SympyFunction):
Expand Down
186 changes: 183 additions & 3 deletions mathics/eval/arithmetic.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
# -*- coding: utf-8 -*-

"""
arithmetic-related evaluation functions.
helper functions for arithmetic evaluation, which do not
depends on the evaluation context. Conversions to Sympy are
used just as a last resource.

Many of these do do depend on the evaluation context. Conversions to Sympy are
used just as a last resource.
Expand Down Expand Up @@ -320,6 +322,28 @@ def eval_complex_sign(n: BaseElement) -> Optional[BaseElement]:
return sign or eval_complex_sign(expr)


def eval_Sign_number(n: Number) -> Number:
"""
Evals the absolute value of a number.
"""
if n.is_zero:
return Integer0
if isinstance(n, (Integer, Rational, Real)):
return Integer1 if n.value > 0 else IntegerM1
if isinstance(n, Complex):
abs_sq = eval_add_numbers(
*(eval_multiply_numbers(x, x) for x in (n.real, n.imag))
)
criteria = eval_add_numbers(abs_sq, IntegerM1)
if test_zero_arithmetic_expr(criteria):
return n
if n.is_inexact():
return eval_multiply_numbers(n, eval_Power_number(abs_sq, RealM0p5))
if test_zero_arithmetic_expr(criteria, numeric=True):
return n
return eval_multiply_numbers(n, eval_Power_number(abs_sq, RationalMOneHalf))


def eval_mpmath_function(
mpmath_function: Callable, *args: Number, prec: Optional[int] = None
) -> Optional[Number]:
Expand All @@ -345,6 +369,31 @@ def eval_mpmath_function(
return call_mpmath(mpmath_function, tuple(mpmath_args), prec)


def eval_Exponential(exp: BaseElement) -> BaseElement:
"""
Eval E^exp
"""
# If both base and exponent are exact quantities,
# use sympy.

if not exp.is_inexact():
exp_sp = exp.to_sympy()
if exp_sp is None:
return None
return from_sympy(sympy.Exp(exp_sp))

prec = exp.get_precision()
if prec is not None:
if exp.is_machine_precision():
number = mpmath.exp(exp.to_mpmath())
result = from_mpmath(number)
return result
else:
with mpmath.workprec(prec):
number = mpmath.exp(exp.to_mpmath())
return from_mpmath(number, prec)


def eval_Plus(*items: BaseElement) -> BaseElement:
"evaluate Plus for general elements"
numbers, items_tuple = segregate_numbers_from_sorted_list(*items)
Expand Down Expand Up @@ -643,9 +692,112 @@ def eval_Times(*items: BaseElement) -> BaseElement:
)


# Here I used the convention of calling eval_* to functions that can produce a new expression, or None
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@rocky, I leave this long comment here about the eval<-> apply semantics. Maybe we want to go over this again before merging this.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I looked at this and there is information here that I a do not believe is elsewhere. I think it should be elsewhere but I don't know right now where that elsewhere is.

# if the result can not be evaluated, or is trivial. For example, if we call eval_Power_number(Integer2, RationalOneHalf)
# it returns ``None`` instead of ``Expression(SymbolPower, Integer2, RationalOneHalf)``.
# The reason is that these functions are written to be part of replacement rules, to be applied during the evaluation process.
# In that process, a rule is considered applied if produces an expression that is different from the original one, or
# if the replacement function returns (Python's) ``None``.
#
# For example, when the expression ``Power[4, 1/2]`` is evaluated, a (Builtin) rule ``Power[base_, exp_]->eval_repl_rule(base, expr)``
# is applied. If the rule matches, `repl_rule` is called with arguments ``(4, 1/2)`` and produces `2`. As `Integer2.sameQ(Power[4, 1/2])`
# is False, then no new rules for `Power` are checked, and a new round of evaluation is atempted.
#
# On the other hand, if ``Power[3, 1/2]``, ``repl_rule`` can do two possible things: one is return ``Power[3, 1/2]``. If it does,
# the rule is considered applied. Then, the evaluation method checks if `Power[3, 1/2].sameQ(Power[3, 1/2])`. In this case it is true,
# and then the expression is kept as it is.
# The other possibility is to return (Python's) `None`. In that case, the evaluator considers that the rule failed to be applied,
# and look for another rule associated to ``Power``. To return ``None`` produces then a faster evaluation, since no ``sameQ`` call is needed,
# and do not prevent that other rules are attempted.
#
# The bad part of using ``None`` as a return is that I would expect that ``eval`` produces always a valid Expression, so if at some point of
# the code I call ``eval_Power_number(Integer3, RationalOneHalf)`` I get ``Expression(SymbolPower, Integer3, RationalOneHalf)``.
#
# From my point of view, it would make more sense to use the following convention:
# * if the method has signature ``eval_method(...)->BaseElement:`` then use the prefix ``eval_``
# * if the method has the siguature ``apply_method(...)->Optional[BaseElement]`` use the prefix ``apply_`` or maybe ``repl_``.
#
# In any case, let's keep the current convention.
#
#


def associate_powers(expr: BaseElement, power: BaseElement = Integer1) -> BaseElement:
"""
base^a^b^c^...^power -> base^(a*b*c*...power)
provided one of the following cases
* `a`, `b`, ... `power` are all integer numbers
* `a`, `b`,... are Rational/Real number with absolute value <=1,
and the other powers are not integer numbers.
* `a` is not a Rational/Real number, and b, c, ... power are all
integer numbers.
"""
powers = []
base = expr
if power is not Integer1:
powers.append(power)

while base.has_form("Power", 2):
previous_base, outer_power = base, power
base, power = base.elements
if len(powers) == 0:
if power is not Integer1:
powers.append(power)
continue
if power is IntegerM1:
powers.append(power)
continue
if isinstance(power, (Rational, Real)):
if abs(power.value) < 1:
powers.append(power)
continue
# power is not rational/real and outer_power is integer,
elif isinstance(outer_power, Integer):
if power is not Integer1:
powers.append(power)
if isinstance(power, Integer):
continue
else:
break
# in any other case, use the previous base and
# exit the loop
base = previous_base
break

if len(powers) == 0:
return base
elif len(powers) == 1:
return Expression(SymbolPower, base, powers[0])
result = Expression(SymbolPower, base, Expression(SymbolTimes, *powers))
return result


def distribute_factor(expr: BaseElement, factor: BaseElement) -> BaseElement:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am not seeing distribute_factor or distribute_powers used anywhere. Where is this used?

"""
q * (a + b + c) -> (q a + q b + q c)
"""
if not expr.has_form("Plus", None):
return expr
terms = (Expression(SymbolTimes, factor, term) for term in expr.elements)
return Expression(SymbolPlus, *terms)


def distribute_powers(expr: BaseElement) -> BaseElement:
"""
(a b c)^p -> (a^p b^p c^p)
"""
if not expr.has_form("Power", 2):
return expr
base, exp = expr.elements
if not base.has_form("Times", None):
return expr
factors = (Expression(SymbolPower, factor, exp) for factor in base.elements)
return Expression(SymbolTimes, *factors)


def eval_add_numbers(
*numbers: Number,
) -> BaseElement:
*numbers: List[Number],
) -> Number:
"""
Add the elements in ``numbers``.
"""
Expand All @@ -671,6 +823,16 @@ def eval_add_numbers(
return from_sympy(sum(item.to_sympy() for item in numbers))


def eval_complex_conjugate(z: Number) -> Number:
"""
Evaluates the complex conjugate of z.
"""
if isinstance(z, Complex):
re, im = z.real, z.imag
return Complex(re, eval_negate_number(im))
return z


def eval_inverse_number(n: Number) -> Number:
"""
Eval 1/n
Expand Down Expand Up @@ -729,6 +891,24 @@ def eval_negate_number(n: Number) -> Number:
return eval_multiply_numbers(IntegerM1, n)


def flat_arithmetic_operators(expr: Expression) -> Expression:
"""
operation[a_number, b, operation[c_number, d], e]-> operation[a, c, b, c, d, e]
"""
# items is a dict with two keys: True and False.
# In True we store numeric items, and in False the symbolic ones.
items = {True: [], False: []}
head = expr.get_head()
for element in expr.elements:
# If the element is also head[elements],
# take its elements, and append to the main expression.
if element.get_head() is head:
for item in flat_arithmetic_operators(element).elements:
item[isinstance(item, Number)].append(item)
item[isinstance(item, Number)].append(item)
return Expression(head, *items[True], *items[False])


def segregate_numbers(
*elements: BaseElement,
) -> Tuple[List[Number], List[BaseElement]]:
Expand Down
Loading
Loading