Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix problematic argument survival in ranger models #141

Merged
merged 1 commit into from
Aug 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions R/kernelshap.R
Original file line number Diff line number Diff line change
Expand Up @@ -359,12 +359,11 @@ kernelshap.ranger <- function(
survival = c("chf", "prob"),
...
) {
survival <- match.arg(survival)


if (is.null(pred_fun)) {
pred_fun <- pred_ranger
pred_fun <- create_ranger_pred_fun(object$treetype, survival = match.arg(survival))
}

kernelshap.default(
object = object,
X = X,
Expand All @@ -381,7 +380,6 @@ kernelshap.ranger <- function(
parallel = parallel,
parallel_args = parallel_args,
verbose = verbose,
survival = survival,
...
)
}
Expand Down
8 changes: 3 additions & 5 deletions R/permshap.R
Original file line number Diff line number Diff line change
Expand Up @@ -172,12 +172,11 @@ permshap.ranger <- function(
survival = c("chf", "prob"),
...
) {
survival <- match.arg(survival)


if (is.null(pred_fun)) {
pred_fun <- pred_ranger
pred_fun <- create_ranger_pred_fun(object$treetype, survival = match.arg(survival))
}

permshap.default(
object = object,
X = X,
Expand All @@ -188,7 +187,6 @@ permshap.ranger <- function(
parallel = parallel,
parallel_args = parallel_args,
verbose = verbose,
survival = survival,
...
)
}
Expand Down
32 changes: 19 additions & 13 deletions R/pred_fun.R
Original file line number Diff line number Diff line change
@@ -1,27 +1,33 @@
#' Predict Function for Ranger
#'
#' Internal function that prepares the predictions of different types of ranger models,
#' including survival models.
#' Returns prediction function for different modes of ranger.
#'
#' @noRd
#' @keywords internal
#' @param model Fitted ranger model.
#' @param newdata Data to predict on.
#' @param treetype The value of `fit$treetype` in a fitted ranger model.
#' @param survival Cumulative hazards "chf" (default) or probabilities "prob" per time.
#' @param ... Additional arguments passed to ranger's predict function.
#'
#' @returns A vector or matrix with predictions.
pred_ranger <- function(model, newdata, survival = c("chf", "prob"), ...) {
#' @returns A function with signature f(model, newdata, ...).
create_ranger_pred_fun <- function(treetype, survival = c("chf", "prob")) {
survival <- match.arg(survival)

pred <- stats::predict(model, newdata, ...)
if (treetype != "Survival") {
pred_fun <- function(model, newdata, ...) {
stats::predict(model, newdata, ...)$predictions
}
return(pred_fun)
}

if (survival == "prob") {
survival <- "survival"
}

if (model$treetype == "Survival") {
out <- if (survival == "chf") pred$chf else pred$survival
pred_fun <- function(model, newdata, ...) {
pred <- stats::predict(model, newdata, ...)
out <- pred[[survival]]
colnames(out) <- paste0("t", pred$unique.death.times)
} else {
out <- pred$predictions
return(out)
}
return(out)
return(pred_fun)
}

28 changes: 28 additions & 0 deletions backlog/test_ranger.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
library(ranger)
library(survival)
library(kernelshap)

set.seed(1)

fit <- ranger(Surv(time, status) ~ ., data = veteran, num.trees = 20)
fit2 <- ranger(time ~ . - status, data = veteran, num.trees = 20)
fit3 <- ranger(time ~ . - status, data = veteran, quantreg = TRUE, num.trees = 20)
fit4 <- ranger(status ~ . - time, data = veteran, probability = TRUE, num.trees = 20)

xvars <- setdiff(colnames(veteran), c("time", "status"))

kernelshap(fit, head(veteran), feature_names = xvars, bg_X = veteran)
permshap(fit, head(veteran), feature_names = xvars, bg_X = veteran)

kernelshap(fit, head(veteran), feature_names = xvars, bg_X = veteran, survival = "prob")
permshap(fit, head(veteran), feature_names = xvars, bg_X = veteran, survival = "prob")

kernelshap(fit2, head(veteran), feature_names = xvars, bg_X = veteran)
permshap(fit2, head(veteran), feature_names = xvars, bg_X = veteran)

kernelshap(fit3, head(veteran), feature_names = xvars, bg_X = veteran, type = "quantiles")
permshap(fit3, head(veteran), feature_names = xvars, bg_X = veteran, type = "quantiles")

kernelshap(fit4, head(veteran), feature_names = xvars, bg_X = veteran)
permshap(fit4, head(veteran), feature_names = xvars, bg_X = veteran)

Loading