Skip to content

Commit

Permalink
Revert "Bug fix on GCM clearsky ratio"
Browse files Browse the repository at this point in the history
  • Loading branch information
grantbuster authored Dec 13, 2024
1 parent 94eebae commit 354d630
Show file tree
Hide file tree
Showing 4 changed files with 44 additions and 79 deletions.
15 changes: 2 additions & 13 deletions sup3r/models/surface.py
Original file line number Diff line number Diff line change
Expand Up @@ -760,18 +760,7 @@ def train(self, true_hr_temp, true_hr_rh, true_hr_topo, input_resolution):
w_delta_topo : float
Weight for the delta-topography feature for the relative humidity
linear regression model.
regr : sklearn.LinearRegression
Trained regression object that predicts regr(x) = y
x : np.ndarray
2D array of shape (n, 2) where n is the number of observations
being trained on and axis=1 is 1) the True high-res temperature
minus the interpolated temperature and 2) the True high-res topo
minus the interpolate topo.
y : np.ndarray
2D array of shape (n,) that represents the true high-res humidity
minus the interpolated humidity
"""

self._input_resolution = input_resolution
assert len(true_hr_temp.shape) == 3, 'Bad true_hr_temp shape'
assert len(true_hr_rh.shape) == 3, 'Bad true_hr_rh shape'
Expand Down Expand Up @@ -810,7 +799,7 @@ def train(self, true_hr_temp, true_hr_rh, true_hr_topo, input_resolution):
x = np.vstack((x1.flatten(), x2.flatten())).T
y = (true_hr_rh - interp_hr_rh).flatten()

regr = linear_model.LinearRegression(fit_intercept=False)
regr = linear_model.LinearRegression()
regr.fit(x, y)
if np.abs(regr.intercept_) > 1e-6:
msg = (
Expand All @@ -824,4 +813,4 @@ def train(self, true_hr_temp, true_hr_rh, true_hr_topo, input_resolution):

w_delta_temp, w_delta_topo = regr.coef_[0], regr.coef_[1]

return w_delta_temp, w_delta_topo, regr, x, y
return w_delta_temp, w_delta_topo
78 changes: 32 additions & 46 deletions sup3r/preprocessing/data_handlers/nc_cc.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import logging
import os

import dask.array as da
import numpy as np
import pandas as pd
from scipy.spatial import KDTree
Expand Down Expand Up @@ -36,7 +37,6 @@ def __init__(
nsrdb_source_fp=None,
nsrdb_agg=1,
nsrdb_smoothing=0,
scale_clearsky_ghi=True,
**kwargs,
):
"""
Expand All @@ -61,21 +61,13 @@ def __init__(
clearsky_ghi from high-resolution nsrdb source data. This is
typically done because spatially aggregated nsrdb data is still
usually rougher than CC irradiance data.
scale_clearsky_ghi : bool
Flag to scale the NSRDB clearsky ghi so that the maximum value
matches the GCM rsds maximum value per spatial pixel. This is
useful when calculating "clearsky_ratio" so that there are not an
unrealistic number of 1 values if the maximum NSRDB clearsky_ghi is
much lower than the GCM values
kwargs : list
Same optional keyword arguments as parent class.
"""
self._nsrdb_source_fp = nsrdb_source_fp
self._nsrdb_agg = nsrdb_agg
self._nsrdb_smoothing = nsrdb_smoothing
self._features = features
self._scale_clearsky_ghi = scale_clearsky_ghi
self._cs_ghi_scale = 1
super().__init__(file_paths=file_paths, features=features, **kwargs)

_signature_objs = (__init__, BaseNCforCC)
Expand All @@ -86,13 +78,11 @@ def _rasterizer_hook(self):
rasterized data, which will then be used when the :class:`Deriver` is
called."""
cs_feats = ['clearsky_ratio', 'clearsky_ghi']
need_cs_ghi = any(
need_ghi = any(
f in self._features and f not in self.rasterizer for f in cs_feats
)
if need_cs_ghi:
if need_ghi:
self.rasterizer.data['clearsky_ghi'] = self.get_clearsky_ghi()
if need_cs_ghi and self._scale_clearsky_ghi:
self.scale_clearsky_ghi()

def run_input_checks(self):
"""Run checks on the files provided for extracting clearsky_ghi. Make
Expand Down Expand Up @@ -193,54 +183,50 @@ def get_clearsky_ghi(self):
)
)

# spatial coarsening from NSRDB to GCM
cs_ghi = res.data[['clearsky_ghi']]
dims = i.flatten()
dims = {Dimension.FLATTENED_SPATIAL: dims, Dimension.TIME: t_slice}
cs_ghi = cs_ghi.isel(dims)
cs_ghi = cs_ghi.coarsen({Dimension.FLATTENED_SPATIAL: self._nsrdb_agg})
cs_ghi = cs_ghi.mean()

# temporal coarsening from NSRDB to daily average
time_freq = (ti_nsrdb[1:] - ti_nsrdb[:-1]).seconds / 3600
time_freq = float(mode(time_freq, keepdims=False).mode)
cs_ghi = cs_ghi.coarsen({Dimension.TIME: int(24 // time_freq)}).mean()
cs_ghi = (
res.data[['clearsky_ghi']]
.isel(
{
Dimension.FLATTENED_SPATIAL: i.flatten(),
Dimension.TIME: t_slice,
}
)
.coarsen({Dimension.FLATTENED_SPATIAL: self._nsrdb_agg})
.mean()
)
time_freq = float(
mode(
(ti_nsrdb[1:] - ti_nsrdb[:-1]).seconds / 3600, keepdims=False
).mode
)

lat_idx = np.arange(self.rasterizer.grid_shape[0])
lon_idx = np.arange(self.rasterizer.grid_shape[1])
cs_ghi = cs_ghi.coarsen({Dimension.TIME: int(24 // time_freq)}).mean()
lat_idx, lon_idx = (
np.arange(self.rasterizer.grid_shape[0]),
np.arange(self.rasterizer.grid_shape[1]),
)
ind = pd.MultiIndex.from_product(
(lat_idx, lon_idx), names=Dimension.dims_2d()
)
cs_ghi = cs_ghi.assign({Dimension.FLATTENED_SPATIAL: ind}).unstack(
Dimension.FLATTENED_SPATIAL
)

# reindex to target time index using only months/days
# (year-independent), this will handle multiple years and leap days
cs_ghi_ti = pd.to_datetime(cs_ghi[Dimension.TIME]).strftime('%m.%d')
target_ti = self.rasterizer.time_index.strftime('%m.%d')
cs_ghi[Dimension.TIME] = cs_ghi_ti
reindex = {Dimension.TIME: target_ti}
cs_ghi = cs_ghi.reindex(reindex)

cs_ghi = cs_ghi.transpose(*Dimension.dims_3d())

cs_ghi = cs_ghi['clearsky_ghi'].data
if cs_ghi.shape[-1] < len(self.rasterizer.time_index):
n = int(
da.ceil(len(self.rasterizer.time_index) / cs_ghi.shape[-1])
)
cs_ghi = da.repeat(cs_ghi, n, axis=2)

cs_ghi = cs_ghi[..., : len(self.rasterizer.time_index)]

self.run_wrap_checks(cs_ghi)

return cs_ghi

def scale_clearsky_ghi(self):
"""Method to scale the NSRDB clearsky ghi so that the maximum value
matches the GCM rsds maximum value per spatial pixel. This is useful
when calculating "clearsky_ratio" so that there are not an unrealistic
number of 1 values if the maximum NSRDB clearsky_ghi is much lower than
the GCM values"""
ghi_max = self.rasterizer.data['rsds'].max(dim='time')
cs_max = self.rasterizer.data['clearsky_ghi'].max(dim='time')
self._cs_ghi_scale = ghi_max / cs_max
self.rasterizer.data['clearsky_ghi'] *= self._cs_ghi_scale


class DataHandlerNCforCCwithPowerLaw(DataHandlerNCforCC):
"""Add power law wind methods to feature registry."""
Expand Down
11 changes: 5 additions & 6 deletions tests/data_handlers/test_dh_nc_cc.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,16 +225,16 @@ def test_solar_cc(agg):
target=target,
shape=shape,
time_slice=slice(0, 1),
scale_clearsky_ghi=True,
)

cs_ratio = handler.data['clearsky_ratio']
ghi = handler.data['rsds']
cs_ghi = handler.data['clearsky_ghi']
cs_ratio_truth = ghi / cs_ghi

assert cs_ratio.max() <= 1
assert cs_ratio.min() >= 0
assert cs_ratio.max() < 1
assert cs_ratio.min() > 0
assert (ghi < cs_ghi).all()
assert np.allclose(cs_ratio, cs_ratio_truth)

with Resource(nsrdb_source_fp) as res:
Expand All @@ -247,6 +247,5 @@ def test_solar_cc(agg):
for j in range(4):
test_coord = handler.lat_lon[i, j]
_, inn = tree.query(test_coord, k=agg)
true = cs_ghi_true[0:48, inn].mean()
scaled_true = true * handler._cs_ghi_scale[i, j]
assert np.allclose(scaled_true, cs_ghi[i, j])

assert np.allclose(cs_ghi_true[0:48, inn].mean(), cs_ghi[i, j])
19 changes: 5 additions & 14 deletions tests/forward_pass/test_surface_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
import numpy as np
import pytest
from rex import Resource
from warnings import warn

from sup3r import CONFIG_DIR, TEST_DATA_DIR
from sup3r.models import Sup3rGan
Expand Down Expand Up @@ -88,23 +87,15 @@ def test_train_rh_model(s_enhance=10):
true_hr_rh = np.transpose(true_hi_res[..., 1], axes=(1, 2, 0))

model = SurfaceSpatialMetModel(FEATURES, s_enhance=s_enhance)
w_delta_temp, w_delta_topo, regr, x, y = model.train(
w_delta_temp, w_delta_topo = model.train(
true_hr_temp, true_hr_rh, topo_hr,
input_resolution={'spatial': '3km', 'temporal': '60min'})

# pretty generous tolerances because the training dataset is so small
check1 = np.allclose(w_delta_temp, SurfaceSpatialMetModel.W_DELTA_TEMP,
atol=0.6)
check2 = np.allclose(w_delta_topo, SurfaceSpatialMetModel.W_DELTA_TOPO,
atol=0.01)

if not check1 or not check2:
msg = ('Trained surface model weights are deviating from previously '
'trained values. This could be due to small training sample '
'size in the test or new sklearn regression algorithms.')
warn(msg)
mae = np.abs(regr.predict(x) - y).mean()
assert mae < 2
assert np.allclose(w_delta_temp, SurfaceSpatialMetModel.W_DELTA_TEMP,
atol=0.6)
assert np.allclose(w_delta_topo, SurfaceSpatialMetModel.W_DELTA_TOPO,
atol=0.01)


def test_multi_step_surface(s_enhance=2, t_enhance=2):
Expand Down

0 comments on commit 354d630

Please sign in to comment.