-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
A FusionDefinition wrapper that takes/produces DTensors. (#3703)
This is a proof of concept for integrating nvFuser's model parallelism to the framework.
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2025-present NVIDIA CORPORATION & AFFILIATES. | ||
# All rights reserved. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
|
||
import multidevice_fixtures | ||
import nvfuser | ||
import pytest | ||
import torch | ||
import torch.distributed as dist | ||
from collections.abc import Iterable | ||
from nvfuser import DataType, FusionDefinition | ||
from torch.distributed.tensor import DTensor | ||
from torch.distributed.tensor.placement_types import Placement, Shard, Replicate | ||
from typing import Callable, cast | ||
|
||
|
||
multidevice_test = multidevice_fixtures.multidevice_test | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def setup_process_group(multidevice_test): | ||
# The default port as used by https://github.com/pytorch/pytorch/blob/45a8b5682eb69d865cbf68c7f2f689b56b4efd53/torch/csrc/distributed/c10d/TCPStore.hpp#L51. | ||
dist.init_process_group( | ||
backend="nccl", | ||
init_method="tcp://localhost:29500", | ||
world_size=multidevice_test.size, | ||
rank=multidevice_test.rank, | ||
) | ||
yield | ||
dist.destroy_process_group() | ||
|
||
|
||
class FusionDefinitionWrapper: | ||
def __init__(self, define_fusion: Callable[[FusionDefinition], None]): | ||
"""Wraps a function that defines a fusion without `multidevice_schedule`.""" | ||
self._define_fusion = define_fusion | ||
|
||
def _create_fusion_definition( | ||
self, in_dtensors: Iterable[DTensor] | ||
) -> FusionDefinition: | ||
define_fn = self._define_fusion | ||
|
||
class Model(FusionDefinition): | ||
def definition(self) -> None: | ||
define_fn(self) | ||
|
||
def _find_tensor_by_index(self, index: int) -> nvfuser.Tensor: | ||
for t in self.sched.tensors(): | ||
if t.index == index: | ||
return t | ||
return None | ||
|
||
def multidevice_schedule(self) -> None: | ||
for in_tensor_index, in_dtensor in zip(self.inputs(), in_dtensors): | ||
in_tensor = self._find_tensor_by_index(in_tensor_index) | ||
|
||
# Set the device mesh. | ||
assert ( | ||
in_dtensor.device_mesh.ndim == 1 | ||
), "nvFuser's Python API only supports 1D meshes." | ||
mesh = nvfuser.DeviceMesh(in_dtensor.device_mesh.mesh.tolist()) | ||
|
||
self.sched._set_device_mesh(in_tensor, mesh) | ||
|
||
# Parallelize. | ||
assert len(in_dtensor.placements) == 1, "Expect a 1D mesh" | ||
placement: Placement = in_dtensor.placements[0] | ||
if placement.is_shard(): | ||
dim = cast(Shard, placement).dim | ||
self.sched.parallelize( | ||
in_tensor, dim, nvfuser.ParallelType.mesh_x | ||
) | ||
|
||
return Model() | ||
|
||
def __call__(self, in_dtensors: Iterable[DTensor]) -> list[DTensor]: | ||
fusion_def = self._create_fusion_definition(in_dtensors) | ||
|
||
in_tensors = [in_dtensor.to_local() for in_dtensor in in_dtensors] | ||
out_tensors = fusion_def.execute(in_tensors) | ||
|
||
for i, out_tensor in enumerate(out_tensors): | ||
if isinstance(out_tensor, nvfuser.DistributedTensor): | ||
mesh = dist.device_mesh.init_device_mesh( | ||
"cuda", (out_tensor.mesh.size,) | ||
) | ||
placements: list[Placement] = [] | ||
for parallel_type in [nvfuser.ParallelType.mesh_x]: | ||
axis: int = out_tensor.axis_sharded_on(parallel_type) | ||
placements.append(Replicate() if axis == -1 else Shard(axis)) | ||
out_tensors[i] = DTensor.from_local(out_tensor.local, mesh, placements) | ||
return out_tensors | ||
|
||
|
||
@pytest.mark.mpi | ||
def test_plus_one(setup_process_group): | ||
def define_fusion(fd: FusionDefinition): | ||
inp = fd.define_tensor( | ||
(-1, -1), contiguity=(False, False), dtype=DataType.Float | ||
) | ||
one = fd.define_scalar(1.0, dtype=DataType.Float) | ||
out = fd.ops.add(inp, one) | ||
fd.add_output(out) | ||
|
||
op = FusionDefinitionWrapper(define_fusion) | ||
|
||
num_devices = dist.get_world_size() | ||
rank = dist.get_rank() | ||
torch.cuda.set_device(rank) | ||
|
||
in_tensor = torch.randn(num_devices, 4) | ||
mesh = dist.device_mesh.init_device_mesh("cuda", [num_devices]) | ||
in_dtensor = dist.tensor.distribute_tensor(in_tensor, mesh, [Shard(0)]) | ||
|
||
(out_dtensor,) = op([in_dtensor]) | ||
torch.testing.assert_close(out_dtensor.to_local(), in_dtensor.to_local() + 1) | ||
assert out_dtensor.device_mesh == in_dtensor.device_mesh | ||
assert out_dtensor.placements == in_dtensor.placements |