Skip to content

Commit

Permalink
MoE parameter passing (#8255)
Browse files Browse the repository at this point in the history
* MoE parameter passing

Signed-off-by: Alexandros Koumparoulis <[email protected]>

* Pass EP/MoE params in consumer scripts.

Signed-off-by: Alexandros Koumparoulis <[email protected]>

* PR fixes

Signed-off-by: Alexandros Koumparoulis <[email protected]>

* Use latest commit of mcore-0.5

Signed-off-by: Alexandros Koumparoulis <[email protected]>

* CI fix

Signed-off-by: Alexandros Koumparoulis <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Signed-off-by: Alexandros Koumparoulis <[email protected]>
Co-authored-by: Alexandros Koumparoulis <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Signed-off-by: Alexandros Koumparoulis <[email protected]>
  • Loading branch information
3 people committed Feb 26, 2024
1 parent 13c279d commit 7177948
Show file tree
Hide file tree
Showing 7 changed files with 87 additions and 5 deletions.
2 changes: 1 addition & 1 deletion Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ pipeline {
steps {
sh 'git clone https://github.com/NVIDIA/Megatron-LM.git && \
cd Megatron-LM && \
git checkout 240a8ef7a21df201e47b5b2ae33cc5f4c5486849 && \
git checkout 98da3792f53c80ac9e865eab49a6fa5ccc293d22 && \
pip install .'
}
}
Expand Down
21 changes: 18 additions & 3 deletions examples/nlp/language_modeling/megatron_gpt_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,9 @@ def main(cfg) -> None:

assert (
cfg.trainer.devices * cfg.trainer.num_nodes
== cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
== cfg.tensor_model_parallel_size
* cfg.pipeline_model_parallel_size
* max(1, cfg.get('expert_model_parallel_size', 1))
), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size"

if cfg.gpt_model_file:
Expand All @@ -224,6 +226,8 @@ def main(cfg) -> None:
# with dist checkpointing we can use the model parallel config specified by the user
pretrained_cfg.tensor_model_parallel_size = cfg.tensor_model_parallel_size
pretrained_cfg.pipeline_model_parallel_size = cfg.pipeline_model_parallel_size
pretrained_cfg.expert_model_parallel_size = cfg.get('expert_model_parallel_size', 1)
pretrained_cfg.micro_batch_size = 1
if trainer.precision == "16":
pretrained_cfg.megatron_amp_O2 = False
elif trainer.precision in ['bf16', 'bf16-mixed'] and cfg.get('megatron_amp_O2', False):
Expand All @@ -237,13 +241,23 @@ def main(cfg) -> None:
)
elif cfg.checkpoint_dir:
app_state = AppState()
if cfg.tensor_model_parallel_size > 1 or cfg.pipeline_model_parallel_size > 1:
app_state.model_parallel_size = cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size
if (
cfg.tensor_model_parallel_size > 1
or cfg.pipeline_model_parallel_size > 1
or cfg.get('expert_model_parallel_size', 1) > 1
):
app_state.model_parallel_size = (
cfg.tensor_model_parallel_size
* cfg.pipeline_model_parallel_size
* cfg.get('expert_model_parallel_size', 1)
)
app_state.tensor_model_parallel_size = cfg.tensor_model_parallel_size
app_state.pipeline_model_parallel_size = cfg.pipeline_model_parallel_size
app_state.expert_model_parallel_size = cfg.get('expert_model_parallel_size', 1)
(
app_state.tensor_model_parallel_rank,
app_state.pipeline_model_parallel_rank,
app_state.expert_model_parallel_rank,
app_state.model_parallel_size,
app_state.data_parallel_size,
app_state.pipeline_model_parallel_split_rank,
Expand All @@ -254,6 +268,7 @@ def main(cfg) -> None:
tensor_model_parallel_size_=cfg.tensor_model_parallel_size,
pipeline_model_parallel_size_=cfg.pipeline_model_parallel_size,
pipeline_model_parallel_split_rank_=cfg.pipeline_model_parallel_split_rank,
expert_model_parallel_size_=cfg.get('expert_model_parallel_size', 1),
)
checkpoint_path = os.path.join(cfg.checkpoint_dir, cfg.checkpoint_name)
# checkpoint_path is a dir in case of distributed checkpointing
Expand Down
1 change: 1 addition & 0 deletions examples/nlp/language_modeling/tuning/megatron_gpt_sft.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ def _modify_config(gpt_cfg, cfg, add_cfg_to_tree=False):
gpt_cfg.ffn_dropout = cfg.model.ffn_dropout
gpt_cfg.use_flash_attention = cfg.model.get('use_flash_attention', False)
gpt_cfg.tensor_model_parallel_size = cfg.model.get('tensor_model_parallel_size', 1)
gpt_cfg.expert_model_parallel_size = cfg.model.get('expert_model_parallel_size', 1)
gpt_cfg.pipeline_model_parallel_size = cfg.model.get('pipeline_model_parallel_size', 1)
gpt_cfg.pipeline_model_parallel_split_rank = cfg.model.get('pipeline_model_parallel_split_rank', 0)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,11 @@ def __init__(self, cfg: DictConfig, trainer: Trainer, no_lm_init=True):
# Overrides used when converting checkpoints
if os.environ.get(NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, "false").lower() == "true":
app_state = AppState()
init_world_size = app_state.tensor_model_parallel_size * app_state.pipeline_model_parallel_size
init_world_size = (
app_state.tensor_model_parallel_size
* app_state.pipeline_model_parallel_size
* (app_state.expert_model_parallel_size or 1)
)
init_global_rank = app_state.global_rank
init_local_rank = app_state.local_rank
else:
Expand All @@ -185,6 +189,7 @@ def __init__(self, cfg: DictConfig, trainer: Trainer, no_lm_init=True):
global_rank=init_global_rank,
local_rank=init_local_rank,
tensor_model_parallel_size=cfg.get('tensor_model_parallel_size', 1),
expert_model_parallel_size=cfg.get('expert_model_parallel_size', 1),
pipeline_model_parallel_size=cfg.get('pipeline_model_parallel_size', 1),
virtual_pipeline_model_parallel_size=vp_size,
pipeline_model_parallel_split_rank=cfg.get('pipeline_model_parallel_split_rank', 0),
Expand Down
26 changes: 26 additions & 0 deletions nemo/collections/nlp/modules/common/megatron/megatron_init.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,8 @@
from megatron.core import tensor_parallel
from megatron.core.parallel_state import (
get_pipeline_model_parallel_rank,
set_expert_model_parallel_rank,
set_expert_model_parallel_world_size,
set_pipeline_model_parallel_rank,
set_pipeline_model_parallel_split_rank,
set_pipeline_model_parallel_world_size,
Expand Down Expand Up @@ -60,6 +62,7 @@ def initialize_model_parallel_for_nemo(
global_rank,
local_rank,
tensor_model_parallel_size=1,
expert_model_parallel_size=1,
pipeline_model_parallel_size=1,
virtual_pipeline_model_parallel_size=None,
pipeline_model_parallel_split_rank=None,
Expand All @@ -81,6 +84,7 @@ def initialize_model_parallel_for_nemo(
app_state.global_rank = global_rank
app_state.world_size = world_size
app_state.local_rank = local_rank
app_state.expert_model_parallel_size = expert_model_parallel_size
app_state.tensor_model_parallel_size = tensor_model_parallel_size
app_state.pipeline_model_parallel_size = pipeline_model_parallel_size
app_state.virtual_pipeline_model_parallel_size = virtual_pipeline_model_parallel_size
Expand All @@ -90,6 +94,7 @@ def initialize_model_parallel_for_nemo(
(
app_state.tensor_model_parallel_rank,
app_state.pipeline_model_parallel_rank,
app_state.expert_model_parallel_rank,
app_state.model_parallel_size,
app_state.data_parallel_size,
app_state.pipeline_model_parallel_split_rank,
Expand All @@ -102,12 +107,16 @@ def initialize_model_parallel_for_nemo(
virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size,
pipeline_model_parallel_split_rank_=pipeline_model_parallel_split_rank,
context_parallel_size_=context_parallel_size,
expert_model_parallel_size_=expert_model_parallel_size,
)

# update apex.transformer globals
set_tensor_model_parallel_world_size(app_state.tensor_model_parallel_size)
set_tensor_model_parallel_rank(app_state.tensor_model_parallel_rank)

set_expert_model_parallel_world_size(app_state.expert_model_parallel_size)
set_expert_model_parallel_rank(app_state.expert_model_parallel_rank)

set_pipeline_model_parallel_rank(app_state.pipeline_model_parallel_rank)
if HAVE_INTERLEAVED:
set_virtual_pipeline_model_parallel_world_size(app_state.virtual_pipeline_model_parallel_size)
Expand Down Expand Up @@ -179,6 +188,7 @@ def fake_initialize_model_parallel(
pipeline_model_parallel_size_,
pipeline_model_parallel_split_rank_=None,
virtual_pipeline_model_parallel_size_=None,
expert_model_parallel_size_=1,
context_parallel_size_=1,
):
"""
Expand Down Expand Up @@ -302,6 +312,21 @@ def fake_initialize_model_parallel(
logging.info(f'All tensor model parallel group ranks: {all_tensor_model_parallel_group_ranks}')
logging.info(f'Rank {rank} has tensor model parallel rank: {tensor_model_parallel_rank}')

# EP rank
expert_model_parallel_rank = 0
if expert_model_parallel_size_ is not None and expert_model_parallel_size_ > 1:
tensor_and_data_group_size: int = tensor_model_parallel_size * data_parallel_size
num_tensor_and_data_groups: int = world_size // tensor_and_data_group_size
tensor_and_expert_group_size: int = tensor_model_parallel_size * expert_model_parallel_size_
num_expert_groups: int = data_parallel_size // expert_model_parallel_size_
for i in range(num_tensor_and_data_groups):
for j in range(num_expert_groups):
start_rank = i * tensor_and_data_group_size + j * tensor_and_expert_group_size
end_rank = i * tensor_and_data_group_size + (j + 1) * tensor_and_expert_group_size
ranks = range(start_rank, end_rank)
if rank in ranks:
expert_model_parallel_rank = list(ranks).index(rank)

# Build the pipeline model-parallel groups and embedding groups
# (first and last rank in each pipeline model-parallel group).
all_pipeline_model_parallel_group_ranks = []
Expand Down Expand Up @@ -340,6 +365,7 @@ def fake_initialize_model_parallel(
return (
tensor_model_parallel_rank,
pipeline_model_parallel_rank,
expert_model_parallel_rank,
model_parallel_size,
data_parallel_size,
pipeline_model_parallel_split_rank_,
Expand Down
1 change: 1 addition & 0 deletions nemo/collections/nlp/parts/nlp_overrides.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,7 @@ def init_model_parallel(sharp: bool, nccl_communicator_config_path: str = None)
context_parallel_size=app_state.context_parallel_size,
nccl_communicator_config_path=nccl_communicator_config_path,
use_sharp=sharp,
expert_model_parallel_size=app_state.expert_model_parallel_size,
)

# assert that fake tp and pp rank match after model parallel init
Expand Down
34 changes: 34 additions & 0 deletions nemo/utils/app_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,15 @@ def __init__(self):
self._local_rank = None
self._global_rank = None
self._tensor_model_parallel_rank = None
self._expert_model_parallel_rank = None
self._pipeline_model_parallel_rank = None
self._data_parallel_rank = None

self._world_size = None
self._model_parallel_size = None
self._tensor_model_parallel_size = None
self._tensor_model_parallel_group = None
self._expert_model_parallel_size = None
self._pipeline_model_parallel_size = None
self._virtual_pipeline_model_parallel_size = None
self._pipeline_model_parallel_group = None
Expand Down Expand Up @@ -141,6 +143,38 @@ def tensor_model_parallel_size(self, size):
"""
self._tensor_model_parallel_size = size

@property
def expert_model_parallel_rank(self):
""" Property returns the expert model parallel rank.
Returns:
Tensor model parallel rank.
"""
return self._expert_model_parallel_rank

@expert_model_parallel_rank.setter
def expert_model_parallel_rank(self, rank):
""" Property sets the expert model parallel rank.
Args:
rank (int): Tensor model parallel rank.
"""
self._expert_model_parallel_rank = rank

@property
def expert_model_parallel_size(self):
""" Property returns the number of GPUs in each expert parallel group.
Returns:
Number of GPUs in each expert parallel group.
"""
return self._expert_model_parallel_size

@expert_model_parallel_size.setter
def expert_model_parallel_size(self, size):
""" Property sets the number of GPUs in each expert parallel group.
Args:
size (int): Number of GPUs in each expert parallel group.
"""
self._expert_model_parallel_size = size

@property
def pipeline_model_parallel_size(self):
""" Property returns the number of GPUs in each model parallel group.
Expand Down

0 comments on commit 7177948

Please sign in to comment.