Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create PrecisionPlugin for megatron_ckpt_to_nemo.py trainer #7774

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 36 additions & 5 deletions examples/nlp/language_modeling/megatron_ckpt_to_nemo.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
import torch
from genericpath import isdir
from megatron.core import parallel_state
from omegaconf import open_dict
from omegaconf import OmegaConf, open_dict
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
from pytorch_lightning.trainer.trainer import Trainer

Expand All @@ -42,7 +42,12 @@
from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel
from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from nemo.collections.nlp.models.machine_translation.megatron_nmt_model import MegatronNMTModel
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.collections.nlp.parts.nlp_overrides import (
GradScaler,
NLPDDPStrategy,
NLPSaveRestoreConnector,
PipelineMixedPrecisionPlugin,
)
from nemo.utils import AppState, logging
from nemo.utils.distributed import initialize_distributed
from nemo.utils.model_utils import inject_model_parallel_rank
Expand Down Expand Up @@ -92,6 +97,14 @@ def get_args():
)
parser.add_argument("--local_rank", type=int, required=False, default=os.getenv('LOCAL_RANK', -1))
parser.add_argument("--bcp", action="store_true", help="Whether on BCP platform")
parser.add_argument(
"--precision",
type=str,
required=False,
default='16-mixed',
choices=['32-true', '16-mixed', 'bf16-mixed'],
help="Precision value for the trainer that matches with precision of the ckpt",
)

args = parser.parse_args()
return args
Expand All @@ -109,9 +122,27 @@ def convert(local_rank, rank, world_size, args):
if args.model_type == 'gpt':
strategy = NLPDDPStrategy()

trainer = Trainer(
devices=args.gpus_per_node, num_nodes=num_nodes, accelerator='gpu', plugins=plugins, strategy=strategy
)
cfg = {
'trainer': {
'devices': args.gpus_per_node,
'num_nodes': num_nodes,
'accelerator': 'gpu',
'precision': args.precision,
},
'model': {'native_amp_init_scale': 2 ** 32, 'native_amp_growth_interval': 1000, 'hysteresis': 2},
}
cfg = OmegaConf.create(cfg)

scaler = None
# If FP16 create a GradScaler as the build_model_parallel_config of MegatronBaseModel expects it
if cfg.trainer.precision == '16-mixed':
scaler = GradScaler(
init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32),
growth_interval=cfg.model.get('native_amp_growth_interval', 1000),
hysteresis=cfg.model.get('hysteresis', 2),
)
plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler))
trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer)

app_state.pipeline_model_parallel_size = args.pipeline_model_parallel_size
app_state.tensor_model_parallel_size = args.tensor_model_parallel_size
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,10 @@

@hydra_runner(config_path="conf", config_name="punctuation_capitalization_config")
def main(cfg: DictConfig) -> None:
# PTL 2.0 has find_unused_parameters as False by default, so its required to set it to True
# when there are unused parameters like here
if cfg.trainer.strategy == 'ddp':
cfg.trainer.strategy = "ddp_find_unused_parameters_true"
torch.manual_seed(42)
cfg = OmegaConf.merge(OmegaConf.structured(PunctuationCapitalizationConfig()), cfg)
trainer = pl.Trainer(**cfg.trainer)
Expand Down