This repository contains the code and pretrained models of
Human Pose Estimation with Parsing Induced Learner [PDF]
Xuecheng Nie, Jiashi Feng, Yiming Zuo, and Shuicheng Yan
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
- Python 3.5
- Pytorch 0.2.0
- OpenCV 3.0 or higher
- Install Pytorch: Please follow the official instruction on installation of Pytorch.
- Clone the repository
git clone --recursive https://github.com/NieXC/pytorch-pil.git
- Download Look into Person (LIP) dataset and create symbolic links to the following directories
ln -s PATH_TO_LIP_TRAIN_IMAGES_DIR dataset/lip/train_images ln -s PATH_TO_LIP_VAL_IMAGES_DIR dataset/lip/val_images ln -s PATH_TO_LIP_TEST_IMAGES_DIR dataset/lip/testing_images ln -s PATH_TO_LIP_TRAIN_SEGMENTATION_ANNO_DIR dataset/lip/train_segmentations ln -s PATH_TO_LIP_VAL_SEGMENTATION_ANNO_DIR dataset/lip/val_segmentations
Run the following command to train the model from scratch (Default: 8-stack of Hourglass network as pose network and 1-stack of Hourglass network as parsing induced learner):
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0,1 python main.py -b 24 --lr 0.0015
A simple way to record the training log by adding the following command:
2>&1 | tee exps/logs/pil_lip.log
Some configurable parameters in training phase:
--arch
network architecture (HG (Hourglass) or VGG)-b
mini-batch size--lr
initial learning rate (0.0015 for HG based model and 0.0001 for VGG based model)--epochs
total number of epochs for training--snapshot-fname-prefix
prefix of file name for snapshot, e.g. if set '--snapshot-fname-prefix exps/snapshots/pil_lip', then 'pil_lip.pth.tar' (latest model) and 'pil_lip_best.pth.tar' (model with best validation accuracy) will be generated in the folder 'exps/snapshots'--resume
path to the model for recovering training-j
number of workers for loading data--print-freq
print frequency
Run the following command to evaluate the model on LIP validation set
:
sh run_test.sh
or
CUDA_VISIBLE_DEVICES=0 python main.py --evaluate True --calc-pck True --resume exps/snapshots/pil_lip_best.pth.tar
Run the following command to evaluate the model on LIP testing set
:
CUDA_VISIBLE_DEVICES=0 python main.py --evaluate True --resume exps/snapshots/pil_lip_best.pth.tar --eval-data dataset/lip/testing_images --eval-anno dataset/lip/jsons/LIP_SP_TEST_annotations.json
In particular, results will be saved as a .csv
file followed the official evaluation format of LIP dataset for single-person human pose estimation. An example is provided in exps/preds/csv_results/pred_keypoints_lip.csv
.
Some configurable parameters in testing phase:
--evaluate
True for testing and false for training--resume
path to the model for evaluation--calc-pck
calculate PCK or not--pred-path
path to the csv file for saving the evaluation results--visualization
visualize evaluation or not--vis-dir
directory for saving the visualization results
If you use our code in your work or find it is helpful, please cite the paper:
@inproceedings{nie2018pil,
title={Human Pose Estimation with Parsing Induced Learner},
author={Nie, Xuecheng and Feng, Jiashi and Zuo, Yiming and Yan, Shuicheng},
booktitle={CVPR},
year={2018}
}